Machine Learning-Based Method for Prediction of Virtual Network Function Resource Demands

被引:7
|
作者
Kim, Hee-Gon [1 ]
Lee, Do-Young [1 ]
Jeong, Se-Yeon [1 ]
Choi, Heeyoul [2 ]
Yoo, Jae-Hyung [3 ]
Hong, James Won-Ki [1 ]
机构
[1] Pohang Univ Sci & Technol, Comp Sci & Engn, Pohang, South Korea
[2] Handong Global Univ, Pohang, South Korea
[3] Pohang Univ Sci & Technol, Grad Sch Informat Technol, Pohang, South Korea
关键词
VNF; SFC; Machine Learning; Resource Demand Prediction;
D O I
10.1109/netsoft.2019.8806687
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are paradigms that help administrators to manage dynamic networks. While SDN allows centralized network control, NFV provides flexible and scalable Virtual Network Functions (VNFs). These paradigms are also enablers for concepts such as Service Function Chaining (SFC) where chains are composed of several VNFs to provide a specific service. However, in order to maximize the benefits from the above-mentioned flexibility, new research questions need to be addressed, e.g., regarding effective management processes for dynamic networks. We proposed a novel learning model based on the flexibility of softwarization and abundant volume of monitoring data in NFV environments to predict VNF resource demands using SFC data. Our model is based on Context and Aspect Embedded Attentive Target Dependent Long Short Term Memory (CAT-LSTM) that consists of Target-Dependent LSTM (TD-LSTM), context embedding, aspect embedding, and attention. We developed this model to obtain high accuracy for the prediction of VNF resources such as the CPU. Our model uses two labeling systems: the qualitative resource state and the quantitative resource usage, both of which are used to evaluate its performance. This assists the administrator in understanding the network conditions, improves prediction performance, and provides practically useful information. Our learning model for predicting VNF resource demands can be utilized to solve essential SFC problems such as auto -scaling and optimal placement, which in turn prevent service interruption and provide high reliability.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 50 条
  • [31] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [32] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [33] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [34] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [35] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [36] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [37] Machine Learning-based Service Function Chain over UAVs: Resource Profiling and Framework
    Nguyen Trung Kien
    Vu Hoang Anh
    Vu Dinh Phong
    Nguyen Ngoc Minh
    Nguyen Huu Thanh
    2021 31ST INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2021, : 127 - 133
  • [38] TB-IECS: an accurate machine learning-based scoring function for virtual screening
    Zhang, Xujun
    Shen, Chao
    Jiang, Dejun
    Zhang, Jintu
    Ye, Qing
    Xu, Lei
    Hou, Tingjun
    Pan, Peichen
    Kang, Yu
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [39] Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning
    Harir, Mohamed Abdelkarim Nimir
    Ataro, Edwin
    Nyah, Clement Temaneh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (01) : 304 - 313
  • [40] TB-IECS: an accurate machine learning-based scoring function for virtual screening
    Xujun Zhang
    Chao Shen
    Dejun Jiang
    Jintu Zhang
    Qing Ye
    Lei Xu
    Tingjun Hou
    Peichen Pan
    Yu Kang
    Journal of Cheminformatics, 15