Convergence of a finite element method on a Bakhvalov-type mesh for singularly perturbed reaction-diffusion equation

被引:9
|
作者
Zhang, Jin [1 ]
Liu, Xiaowei [2 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular perturbation; Reaction-diffusion equation; Bakhvalov-type mesh; Finite element method; Higher-order; Uniform convergence; BOUNDARY-VALUE-PROBLEMS; SHISHKIN MESH;
D O I
10.1016/j.amc.2020.125403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite element method is applied on a Bakhvalov-type mesh to solve a singularly perturbed reaction-diffusion problem whose solution exhibits boundary layers. A uniform convergence order of O(N-(k+1) + epsilon(1/2N-k)) is proved, where k is the order of piecewise polynomials in the finite element method, eis the diffusion parameter and N is the number of partitions in each direction. Numerical experiments support this theoretical result. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条