In this paper, we propose an unconditionally stable numerical scheme based on finite difference for the approximation of time-fractional diffusion equation on a metric star graph. The fractional derivative is considered in Caputo sense and the so-called L1 method is used for the discrete approximation of Caputo fractional derivative. The convergence and stability of the difference scheme has been proved by means of energy method. Test examples are illustrated in order to verify the feasibility of the proposed scheme. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Prince Mohammad Bin Fahd Univ, Math & Nat Sci, Al Khobar 31952, Saudi ArabiaInst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
Iqbal, Azhar
论文数: 引用数:
h-index:
机构:
Sohail, Muhammad
Abdullah, Farah Aini
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sains Malaysia, Sch Math Sci, George Town 11800, MalaysiaInst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
Abdullah, Farah Aini
Khan, Zohaib
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tun Hussein Onn Malaysia, Fac Mech & Mfg Engn, Batu Pahat 86400, Johor, Malaysia
Quaid E Awam Univ Engn Sci & Technol Larkana, Dept Mech Engn, Sindh, PakistanInst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
Wei, T.
Li, Y. S.
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
GanSu Polit Sci & Law Inst, Sch Cyber Secur, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China