A difference scheme for the time-fractional diffusion equation on a metric star graph

被引:27
|
作者
Mehandiratta, Vaibhav [1 ]
Mehra, Mani [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
关键词
Time-fractional diffusion equation; Finite difference method; Stability; Convergence; Star graph; DOMAIN DECOMPOSITION; NETWORKS; STRINGS;
D O I
10.1016/j.apnum.2020.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an unconditionally stable numerical scheme based on finite difference for the approximation of time-fractional diffusion equation on a metric star graph. The fractional derivative is considered in Caputo sense and the so-called L1 method is used for the discrete approximation of Caputo fractional derivative. The convergence and stability of the difference scheme has been proved by means of energy method. Test examples are illustrated in order to verify the feasibility of the proposed scheme. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 163
页数:12
相关论文
共 50 条
  • [31] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [32] Time-fractional diffusion equation with time dependent diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [33] Compact implicit difference approximation for time-fractional diffusion-wave equation
    Ali, Umair
    Iqbal, Azhar
    Sohail, Muhammad
    Abdullah, Farah Aini
    Khan, Zohaib
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (05) : 4119 - 4126
  • [34] A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation
    Esmaeili, Shahrokh
    Garrappa, Roberto
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (05) : 980 - 994
  • [35] Identifying a diffusion coefficient in a time-fractional diffusion equation
    Wei, T.
    Li, Y. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 151 : 77 - 95
  • [36] Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation
    Wang, Jun-Gang
    Ran, Yu-Hong
    Yuan, Zhan-Bin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 4107 - 4114
  • [37] Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation
    MA Yan
    数学季刊(英文版), 2016, 31 (01) : 69 - 81
  • [38] Time-fractional diffusion equation for signal smoothing
    Li, Yuanlu
    Liu, Fawang
    Turner, Ian W.
    Li, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 326 : 108 - 116
  • [39] Time-fractional diffusion equation with ψ-Hilfer derivative
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [40] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474