Logarithmic Sobolev and Poincare inequalities for the circular Cauchy distribution

被引:6
|
作者
Ma, Yutao [1 ,2 ]
Zhang, Zhengliang [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Wuhan Univ, Dept Math & Stat, Wuhan, Peoples R China
关键词
circular Cauchy distribution; spectral gap; logarithmic Sobolev inequality; TRANSPORTATION COST; EIGENVALUE;
D O I
10.1214/ECP.v19-3071
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the circular Cauchy distribution mu(x) on the unit circle S with index 0 <= vertical bar x vertical bar < 1 and we study the spectral gap and the optimal logarithmic Sobolev constant for mu(x), denoted respectively by lambda(1)(mu(x)) and C-LS (mu(x)). We prove that 1/1+vertical bar x vertical bar <= lambda(1)(mu(x)) <= 1 while C-LS (mu(x)) behaves like log (1+1/1-vertical bar x vertical bar) as vertical bar x vertical bar -> 1.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] From concentration to logarithmic Sobolev and Poincare inequalities
    Gozlan, Nathael
    Roberto, Cyril
    Samson, Paul-Marie
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (05) : 1491 - 1522
  • [2] Interpolation between logarithmic Sobolev and Poincare inequalities
    Arnold, Anton
    Bartier, Jean-Philippe
    Dolbeault, Jean
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) : 971 - 979
  • [3] Fractional Poincare and logarithmic Sobolev inequalities for measure spaces
    Gressman, Philip T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (06) : 867 - 889
  • [4] POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES BY DECOMPOSITION OF THE ENERGY LANDSCAPE
    Menz, Georg
    Schlichting, Andre
    [J]. ANNALS OF PROBABILITY, 2014, 42 (05): : 1809 - 1884
  • [5] Poincare and Logarithmic Sobolev Inequalities for Nearly Radial Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    Wu, Li Ming
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1377 - 1398
  • [6] FROM POINCARE TO LOGARITHMIC SOBOLEV INEQUALITIES: A GRADIENT FLOW APPROACH
    Dolbeault, Jean
    Nazaret, Bruno
    Savare, Giuseppe
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3186 - 3216
  • [7] On Poincare and Logarithmic Sobolev Inequalities for a Class of Singular Gibbs Measures
    Chafai, Djalil
    Lehec, Joseph
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 219 - 246
  • [8] MOMENT ESTIMATES DERIVED FROM POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES
    Aida, S.
    Stroock, D.
    [J]. MATHEMATICAL RESEARCH LETTERS, 1994, 1 (01) : 75 - 86
  • [9] UNIFORM POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES FOR MEAN FIELD PARTICLE SYSTEMS
    Guillin, Arnaud
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 1590 - 1614
  • [10] LOGARITHMIC SOBOLEV INEQUALITIES
    GROSS, L
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A484 - A484