Automated quantification of lung structures from optical coherence tomography images

被引:7
|
作者
Pagnozzi, Alex M. [1 ]
Kirk, Rodney W. [1 ]
Kennedy, Brendan F. [1 ]
Sampson, David D. [1 ,2 ]
McLaughlin, Robert A. [1 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Opt Biomed Engn Lab, Crawley, WA 6009, Australia
[2] Univ Western Australia, Ctr Microscopy Characterisat & Anal, Crawley, WA 6009, Australia
来源
BIOMEDICAL OPTICS EXPRESS | 2013年 / 4卷 / 11期
关键词
RETINAL LAYER SEGMENTATION; SPECKLE REDUCTION; NEEDLE; MECHANICS; PATHOLOGY; ALVEOLI; SPACE; SIZE;
D O I
10.1364/BOE.4.002383
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of the size of lung structures can aid in the assessment of a range of respiratory diseases. In this paper, we present a fully automated segmentation and quantification algorithm for the delineation of large numbers of lung structures in optical coherence tomography images, and the characterization of their size using the stereological measure of median chord length. We demonstrate this algorithm on scans acquired with OCT needle probes in fresh, ex vivo tissues from two healthy animal models: pig and rat. Automatically computed estimates of lung structure size were validated against manual measures. In addition, we present 3D visualizations of the lung structures using the segmentation calculated for each data set. This method has the potential to provide an in vivo indicator of structural remodeling caused by a range of respiratory diseases, including chronic obstructive pulmonary disease and pulmonary fibrosis. (C) 2013 Optical Society of America
引用
收藏
页码:2383 / 2395
页数:13
相关论文
共 50 条
  • [41] Drusen and RPE atrophy automated quantification by optical coherence tomography in an elderly population
    B Diniz
    D C Rodger
    V R Chavali
    T MacKay
    S Y Lee
    D Stambolian
    S V R Sadda
    Eye, 2015, 29 : 272 - 279
  • [42] Automated Segmentation of Optic Nerve Head Structures With Optical Coherence Tomography
    Almobarak, Faisal A.
    O'Leary, Neil
    Reis, Alexandre S. C.
    Sharpe, Glen P.
    Hutchison, Donna M.
    Nicolela, Marcelo T.
    Chauhan, Balwantray C.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (02) : 1161 - 1168
  • [43] Deep Neural Network Based Quantification of Retinal Optical Coherence Tomography Images
    Heisler, Morgan
    Ju, Myeong Jin
    Lu, Donghuan
    Athwal, Arman
    Docherty, Gavin
    Martens, Rosanna
    Mammo, Zaid
    Prentasic, Pavle
    Lee, Sieun
    Chan, Forson
    Bhalla, Mahadev
    Jian, Yifan
    Loncaric, Sven
    Beg, Mirza
    Navajas, Eduardo Vitor
    Sarunic, Marinko
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [44] Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images
    Wang, Zhao
    Kyono, Hiroyuki
    Bezerra, Hiram G.
    Wang, Hui
    Gargesha, Madhusudhana
    Alraies, Chadi
    Xu, Chenyang
    Schmitt, Joseph M.
    Wilson, David L.
    Costa, Marco A.
    Rollins, Andrew M.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
  • [45] Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images
    Markl, Daniel
    Hannesschlaeger, Guenther
    Sacher, Stephan
    Leitner, Michael
    Khinast, Johannes G.
    Buchsbaum, Andreas
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (03)
  • [46] Automated retinal layer segmentation in optical coherence tomography images with intraretinal fluid
    Wang, Luquan
    Li, Xiaowen
    Chen, Yong
    Han, Dingan
    Wang, Mingyi
    Zeng, Yaguang
    Zhong, Junping
    Wang, Xuehua
    Ji, Yanhong
    Xiong, Honglian
    Wei, Xunbin
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (03)
  • [47] Automated tissue classification of intracardiac optical coherence tomography images (Conference Presentation)
    Gan, Yu
    Tsay, David
    Bin Amir, Syed A.
    Marboe, Charles C.
    Hendon, Christine P.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XX, 2016, 9697
  • [48] Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues
    Garcia-Allende, P. Beatriz
    Amygdalos, Iakovos
    Dhanapala, Hiruni
    Goldin, Robert D.
    Hanna, George B.
    Elson, Daniel S.
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (10): : 2821 - 2836
  • [49] Automated Artifacts and Noise Removal from Optical Coherence Tomography Images Using Deep Learning Technique
    Akter, Nahida
    Perry, Stuart
    Fletcher, John
    Simunovic, Matthew
    Roy, Maitreyee
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2536 - 2542
  • [50] Domain Adaptation-Based Automated Detection of Retinal Diseases from Optical Coherence Tomography Images
    Wang, Jing
    Zong, Yuan
    He, Yi
    Shi, Guohua
    Jiang, Chunhui
    CURRENT EYE RESEARCH, 2023, 48 (09) : 836 - 842