Symmetric Fast Marching Schemes for Better Numerical Isotropy

被引:3
|
作者
Appia, Vikram [1 ,2 ]
Yezzi, Anthony [3 ]
机构
[1] Texas Instruments Inc, Embedded Proc R&D Ctr, Imaging Technol Lab, Dallas, TX USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Lab Computat Comp Vis, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Fast marching methods; isotropic fast marching; segmentation; FMM; Eikonal equation; global minimal path; ACTIVE CONTOUR MODELS; EFFICIENT ALGORITHMS; GLOBAL MINIMUM;
D O I
10.1109/TPAMI.2013.52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing fast marching methods solve the Eikonal equation using a continuous (first-order) model to estimate the accumulated cost, but a discontinuous (zero-order) model for the traveling cost at each grid point. As a result the estimate of the accumulated cost (calculated numerically) at a given point will vary based on the direction of the arriving front, introducing an anisotropy into the discrete algorithm even though the continuous partial differential equation (PDE) is itself isotropic. To remove this anisotropy, we propose two very different schemes. In the first model, we utilize a continuous interpolation of the traveling cost, which is not biased by the direction of the propagating front. In the second model, we upsample the traveling cost on a higher resolution grid to overcome the directional bias. We show the significance of removing the directional bias in the computation of the cost in some applications of the fast marching method, demonstrating that both methods make the discrete implementation more isotropic, in accordance with the underlying continuous PDE.
引用
收藏
页码:2298 / U260
页数:7
相关论文
共 50 条
  • [21] Fast marching to moving object location
    Sifakis, E
    Tziritas, G
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 447 - 452
  • [22] Fast Marching for Robust Surface Segmentation
    Schindler, Falko
    Foerstner, Wolfgang
    PHOTOGRAMMETRIC IMAGE ANALYSIS, 2011, 6952 : 147 - 158
  • [23] Efficient fast marching with Finsler metrics
    Jean-Marie Mirebeau
    Numerische Mathematik, 2014, 126 : 515 - 557
  • [24] Isotropy groups of the action of orthogonal similarity on symmetric matrices
    Starcic, Tadej
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (05): : 842 - 866
  • [25] The symmetric space, strong isotropy irreducibility and equigeodesic properties
    Ming Xu
    Ju Tan
    Science China Mathematics, 2024, 67 : 129 - 148
  • [26] The symmetric space, strong isotropy irreducibility and equigeodesic properties
    Ming Xu
    Ju Tan
    Science China(Mathematics), 2024, 67 (01) : 129 - 148
  • [27] Fast Marching Based Superpixels Generation
    Chang, Kaiwen
    Figliuzzi, Bruno
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING, ISMM 2019, 2019, 11564 : 350 - 361
  • [28] A NUMERICAL STUDY OF LOCAL ISOTROPY OF TURBULENCE
    ANTONIA, RA
    KIM, J
    PHYSICS OF FLUIDS, 1994, 6 (02) : 834 - 841
  • [29] ORBITS OF THE ISOTROPY GROUP ACTION ON QUATERNIONIC SYMMETRIC SPACES
    Sasaki, Yuuki
    OSAKA JOURNAL OF MATHEMATICS, 2024, 61 (04) : 529 - 558
  • [30] A Massive Parallel Fast Marching Method
    Kotas, Petr
    Croce, Roberto
    Poletti, Valentina
    Vondrak, Vit
    Krause, Rolf
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 311 - 318