Symmetric Fast Marching Schemes for Better Numerical Isotropy

被引:3
|
作者
Appia, Vikram [1 ,2 ]
Yezzi, Anthony [3 ]
机构
[1] Texas Instruments Inc, Embedded Proc R&D Ctr, Imaging Technol Lab, Dallas, TX USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Lab Computat Comp Vis, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Fast marching methods; isotropic fast marching; segmentation; FMM; Eikonal equation; global minimal path; ACTIVE CONTOUR MODELS; EFFICIENT ALGORITHMS; GLOBAL MINIMUM;
D O I
10.1109/TPAMI.2013.52
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing fast marching methods solve the Eikonal equation using a continuous (first-order) model to estimate the accumulated cost, but a discontinuous (zero-order) model for the traveling cost at each grid point. As a result the estimate of the accumulated cost (calculated numerically) at a given point will vary based on the direction of the arriving front, introducing an anisotropy into the discrete algorithm even though the continuous partial differential equation (PDE) is itself isotropic. To remove this anisotropy, we propose two very different schemes. In the first model, we utilize a continuous interpolation of the traveling cost, which is not biased by the direction of the propagating front. In the second model, we upsample the traveling cost on a higher resolution grid to overcome the directional bias. We show the significance of removing the directional bias in the computation of the cost in some applications of the fast marching method, demonstrating that both methods make the discrete implementation more isotropic, in accordance with the underlying continuous PDE.
引用
收藏
页码:2298 / U260
页数:7
相关论文
共 50 条
  • [1] PRESSURE MARCHING SCHEMES THAT WORK
    RICHARDS, CW
    CRANE, CM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (04) : 599 - 610
  • [2] Fast marching methods
    Sethian, JA
    SIAM REVIEW, 1999, 41 (02) : 199 - 235
  • [3] Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation
    Fernandez, Miguel A.
    Zemzemi, Nejib
    MATHEMATICAL BIOSCIENCES, 2010, 226 (01) : 58 - 75
  • [4] Numerical Modeling of Crack Growth Using the Level Set Fast Marching Method
    Jovicic, Gordana
    Zivkovic, Miroslav
    Jovicic, Nebojsa
    FME TRANSACTIONS, 2005, 33 (01): : 11 - 19
  • [5] STABILITY OF TIME-MARCHING NUMERICAL SCHEMES FOR THE ELECTRIC-FIELD INTEGRAL-EQUATION
    DAVIES, PJ
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1994, 8 (01) : 85 - 114
  • [6] A Multiplicity Formula for Isotropy Representations of Symmetric Pairs
    Han, Gang
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) : 666 - 674
  • [7] BIHARMONIC ORBITS OF ISOTROPY REPRESENTATIONS OF SYMMETRIC SPACES
    Ohno, Shinji
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (01) : 48 - 63
  • [8] THE EQUIVARIANT COHOMOLOGY OF ISOTROPY ACTIONS ON SYMMETRIC SPACES
    Goertsches, Oliver
    DOCUMENTA MATHEMATICA, 2012, 17 : 79 - 94
  • [9] A modified fast marching method
    Danielsson, PE
    Lin, QF
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 1154 - 1161
  • [10] GO Solutions with Fast Marching
    Capozzoli, Amedeo
    Curcio, Claudio
    Liseno, Angelo
    Savarese, Salvatore
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,