A note on the solution to the diffusion equation

被引:0
|
作者
Wang, YL [1 ]
机构
[1] SHELL CANADA LTD,CALGARY,AB T2P 3S6,CANADA
关键词
heat-fluid-stress diffusion; Gauss-Legendre; Laplace transform; Stehfest method;
D O I
10.1002/(SICI)1096-9853(199606)20:6<443::AID-NAG827>3.0.CO;2-Q
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Three methods (Gauss-Legendre method, Stehfest method and Laplace transform method) are used to evaluate a solution of a coupled heat-fluid linear diffusion equation. Comparing with the results by Jaeger, the accuracy and efficiency of the Stehfest and Gauss-Legendre methods and the limitations of the truncated solutions obtained by Laplace transformation are discussed. It is concluded that the Stehfest method gives accurate results and is numerically more efficient than the other two methods, particularly for the solutions in early time. Two transformations with u = -ln(x) and u = arctan(x pi/2), where u is the original integral variable, are considered in the Gauss-Legendre method.
引用
收藏
页码:443 / 452
页数:10
相关论文
共 50 条
  • [31] A NOMOGRAPHIC SOLUTION OF THE GAUSSIAN DIFFUSION EQUATION
    PETERSON, KR
    ATMOSPHERIC ENVIRONMENT, 1985, 19 (01) : 87 - 91
  • [32] SOLUTION OF EQUATION OF THERMAL DIFFUSION COLUMN
    RUPPEL, TC
    COULL, J
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1964, 3 (04): : 368 - &
  • [33] Solution of a modified fractional diffusion equation
    Langlands, TAM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 (136-144) : 136 - 144
  • [34] Decay solution for the renewal equation with diffusion
    Abdellaoui, Boumediene
    Touaoula, Tarik Mohamed
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (03): : 271 - 288
  • [35] Similarity Solution for Fractional Diffusion Equation
    Duan, Jun-Sheng
    Guo, Ai-Ping
    Yun, Wen-Zai
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [36] The explicit solution of a diffusion equation with singularity
    Watanabe, M
    Watanabe, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) : 383 - 389
  • [37] ANALOG SOLUTION OF THE AMBIPOLAR DIFFUSION EQUATION
    GILLET, P
    KALLALA, MA
    MASSOL, JL
    LETURCQ, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (02): : 53 - 59
  • [38] AN EXACT SOLUTION OF THE DIFFUSION EQUATION WITH SHRINKING
    VIOLLAZ, PE
    SUAREZ, C
    CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1994, 55 (03): : 135 - 138
  • [39] Analytical solution of the nonlinear diffusion equation
    Ravi Shanker Dubey
    Pranay Goswami
    The European Physical Journal Plus, 133
  • [40] Numerical solution of a fast diffusion equation
    Le Roux, MN
    Mainge, PE
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 461 - 485