Quantum groups and quantization of Weyl group symmetries of Painleve systems

被引:0
|
作者
Kuroki, Gen [1 ]
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9800814, Japan
关键词
DISCRETE DYNAMICAL-SYSTEMS; REPRESENTATIONS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We shall construct the quantized q-analogues of the birational Weyl group actions arising from nilpotent Poisson algebras, which are conceptual generalizations, proposed by Noumi and Yamada, of the Backlund transformations for Painleve equations. Consider a quotient Ore domain of the lower nilpotent part of a quantized universal enveloping algebra for any symmetrizable generalized Cartan matrix. Then non-integral powers of the image of the Chevalley generators generate the quantized q-analogue of the birational Weyl group action. Using the same method, we shall reconstruct the quantized Backlund transformations of q-Painleve equations constructed by Hasegawa. We shall also prove that any subquotient integral domain of a quantized universal enveloping algebra of finite or affine type is an Ore domain.
引用
收藏
页码:289 / 325
页数:37
相关论文
共 50 条
  • [21] COVARIANT MELLIN TRANSFORMS AND WEYL GROUP QUANTIZATION
    LUKIERSKI, J
    PHYSICS LETTERS B, 1974, B 53 (01) : 89 - 92
  • [22] Generalized Weyl quantization on the cylinder and the quantum phase
    Przanowski, Maciej
    Brzykcy, Przemyslaw
    ANNALS OF PHYSICS, 2013, 337 : 34 - 48
  • [23] Classical vs. quantum groups as symmetries of quantized systems
    Arik, M
    Unel, G
    SYMMETRIES IN SCIENCE IX, 1997, : 1 - 8
  • [24] Berezin-Weyl quantization for Cartan motion groups
    Cahen, Benjamin
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (01): : 127 - 137
  • [25] QUANTUM GROUP AND Q-VIRASORO SYMMETRIES IN FERMION SYSTEMS
    SATO, HT
    PROGRESS OF THEORETICAL PHYSICS, 1995, 93 (01): : 195 - 208
  • [26] On second quantization of quantum groups
    Grosse, H
    Schlesinger, KG
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 7043 - 7060
  • [27] Quantum Groups as Hidden Symmetries of Quantum Impurities
    Yakaboylu, E.
    Shkolnikov, M.
    Lemeshko, M.
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [28] Quantum corrections to the Weyl quantization of the classical time of arrival
    Pablico, Dean Alvin L.
    Galapon, Eric A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (02):
  • [29] Quantum corrections to the Weyl quantization of the classical time of arrival
    Dean Alvin L. Pablico
    Eric A. Galapon
    The European Physical Journal Plus, 138
  • [30] PAINLEVE PROPERTY AND GROUP SYMMETRIES OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION
    ROLLINS, DK
    SHIVAMOGGI, BK
    PHYSICA SCRIPTA, 1994, 49 (03): : 261 - 263