A Spatio-Temporal Convolutional Neural Network for Skeletal Action Recognition

被引:2
|
作者
Hu, Lizhang [1 ]
Xu, Jinhua [1 ]
机构
[1] East China Normal Univ, Dept Comp Sci & Technol, Shanghai Key Lab Multidimens Informat Proc, 3663 North Zhongshan Rd, Shanghai, Peoples R China
关键词
Convolutional neural networks; Skeletal action recognition; Deep learning; Action recognition; JOINTS;
D O I
10.1007/978-3-319-70090-8_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human action recognition based on 3D skeleton data is a rapidly growing research area in computer vision. Convolutional Neural Networks (CNNs) have been proved to be the most effective representation learning in many vision tasks, but there is little work of CNNs for skeletal action recognition due to the variable-length of time sequences and lack of big skeleton datasets. In this paper, we propose a Spatio-Temporal CNN for skeleton based action recognition. A CNN architecture with two convolutional layers is used, in which the first layer is used to capture the spatial patterns and second layer for spatio-temporal patterns. Some techniques including data augmentation and segment pooling strategy are employed for long sequences. Experimental results on MSR Action3D, MSR DailyActivity3D and UT-Kinect show that our approach achieves comparable results with those of the state-of-the-art models.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 50 条
  • [21] STCA: an action recognition network with spatio-temporal convolution and attention
    Qiuhong Tian
    Weilun Miao
    Lizao Zhang
    Ziyu Yang
    Yang Yu
    Yanying Zhao
    Lan Yao
    International Journal of Multimedia Information Retrieval, 2025, 14 (1)
  • [22] Fine grained sport action recognition with Twin spatio-temporal convolutional neural networksApplication to table tennis
    Pierre-Etienne Martin
    Jenny Benois-Pineau
    Renaud Péteri
    Julien Morlier
    Multimedia Tools and Applications, 2020, 79 : 20429 - 20447
  • [23] TORNADO: A Spatio-Temporal Convolutional Regression Network for Video Action Proposal
    Zhu, Hongyuan
    Vial, Romain
    Lu, Shijian
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5814 - 5822
  • [24] A spatio-temporal neural network applied to visual speech recognition
    Baig, AR
    Séguier, R
    Vaucher, G
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 797 - 802
  • [25] The Complex Convolutional Neural Network for Adaptive Spatio-Temporal Broadband Beamforming
    Wu, Xun
    Xue, Cong
    Zhang, Shurui
    Zhu, Hairui
    Han, Yubing
    Sheng, Weixing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10778 - 10782
  • [26] Convolutional Neural Network for Cooperative Spectrum Sensing with Spatio-Temporal Dataset
    Shachi, P.
    Sudhindra, K. R.
    Suma, M. N.
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [27] PedNet: A Spatio-Temporal Deep Convolutional Neural Network for Pedestrian Segmentation
    Ullah, Mohib
    Mohammed, Ahmed
    Cheikh, Faouzi Alaya
    JOURNAL OF IMAGING, 2018, 4 (09)
  • [28] Online Spatio-temporal 3D Convolutional Neural Network for Early Recognition of Handwritten Gestures
    Mocaer, William
    Anquetil, Eric
    Kulpa, Richard
    DOCUMENT ANALYSIS AND RECOGNITION - ICDAR 2021, PT I, 2021, 12821 : 221 - 236
  • [29] Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
    Cho, Jungchan
    Hwang, Hyoseok
    SENSORS, 2020, 20 (12) : 1 - 18
  • [30] Spatio-Temporal Image Representation of 3D Skeletal Movements for View-Invariant Action Recognition with Deep Convolutional Neural Networks
    Huy Hieu Pham
    Salmane, Houssam
    Khoudour, Louahdi
    Crouzil, Alain
    Zegers, Pablo
    Velastin, Sergio A.
    SENSORS, 2019, 19 (08)