Superintegrable Extensions of Superintegrable Systems

被引:11
|
作者
Chanu, Claudia M. [1 ]
Degiovanni, Luca [1 ]
Rastelli, Giovanni
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
superintegrable Hamiltonian systems; polynomial first integrals;
D O I
10.3842/SIGMA.2012.070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E-2 and S-2 and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Elliptic curve arithmetic and superintegrable systems
    Tsiganov, A. V.
    [J]. PHYSICA SCRIPTA, 2019, 94 (08)
  • [32] Superintegrable Bertrand Natural Mechanical Systems
    Kudryavtseva E.A.
    Fedoseev D.A.
    [J]. Journal of Mathematical Sciences, 2020, 248 (4) : 409 - 429
  • [33] Adding potentials to superintegrable systems with symmetry
    Fordy, Allan P.
    Huang, Qing
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2248):
  • [34] Symmetry reduction and superintegrable Hamiltonian systems
    Rodriguez, M. A.
    Tempesta, P.
    Winternitz, P.
    [J]. WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [35] On superintegrable systems separable in Cartesian coordinates
    Grigoriev, Yu. A.
    Tsiganov, A. V.
    [J]. PHYSICS LETTERS A, 2018, 382 (32) : 2092 - 2096
  • [36] On the Integrable Deformations of the Maximally Superintegrable Systems
    Lazureanu, Cristian
    [J]. SYMMETRY-BASEL, 2021, 13 (06):
  • [37] Exact solvability of superintegrable Benenti systems
    Sergyeyev, Artur
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [38] On Superintegrable Systems with a Cubic Integral of Motion
    尚琳
    黄晴
    [J]. Communications in Theoretical Physics, 2018, 69 (01) : 9 - 13
  • [39] Maximally superintegrable systems of Winternitz type
    Gonera, C
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 47 - 52
  • [40] Superintegrable systems in classical and quantum mechanics
    Winternitz, P
    [J]. NEW TRENDS IN INTEGRABILITY AND PARTIAL SOLVABILITY, 2004, 132 : 281 - 297