Eigenvalues of the nonlinear Schrodinger equation

被引:0
|
作者
Geltman, S. [1 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
来源
EUROPEAN PHYSICAL JOURNAL D | 2012年 / 66卷 / 09期
关键词
BOSE; VORTEX;
D O I
10.1140/epjd/e2012-30194-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Properties of the nonlinear Schrodinger equation, a form that often arises in many-body problems, are investigated. The eigenvalues for a diffuse boson gas confined in a sphere are evaluated. The important differences from the linear case, such as the nonorthogonality of the eigenfunctions and their dramatically different variational properties are examined.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] The nonlinear Schrodinger equation on the interval
    Fokas, AS
    Its, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23): : 6091 - 6114
  • [42] Schrodinger equation with a nonlinear correction
    Yao, QK
    Jia, Y
    Wei, YN
    Ma, BX
    Li, XJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (09): : 991 - 996
  • [43] ON THE NONLINEAR SCHRODINGER-EQUATION
    DATSEFF, AB
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1985, : 739 - 740
  • [44] Derivation of Nonlinear Schrodinger Equation
    Wu, Xiang-Yao
    Zhang, Bai-Jun
    Liu, Xiao-Jing
    Xiao, Li
    Wu, Yi-Heng
    Wang, Yan
    Wang, Qing-Cai
    Cheng, Shuang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2437 - 2445
  • [45] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [46] Solving the nonlinear Schrodinger equation
    Forestieri, E
    Secondini, M
    OPTICAL COMMUNICATION THEORY AND TECHNIQUES, 2005, : 3 - +
  • [47] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630
  • [48] Comments on the nonlinear Schrodinger equation
    Davidson, MP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (11): : 1291 - 1295
  • [49] On a deformation of the nonlinear Schrodinger equation
    Arnaudon, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (12)
  • [50] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618