A Method for Predicting the Remaining Life of Rolling Bearings Based on Multi-Scale Feature Extraction and Attention Mechanism

被引:6
|
作者
Jiang, Changhong [1 ]
Liu, Xinyu [1 ]
Liu, Yizheng [2 ]
Xie, Mujun [1 ]
Liang, Chao [1 ]
Wang, Qiming [1 ]
机构
[1] Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130000, Peoples R China
[2] Jilin Prov Dengxi Technol Co Ltd, Changchun 130022, Peoples R China
关键词
rolling bearing; residual life prediction; multi-scale feature extraction; attention mechanism; CONVOLUTIONAL NEURAL-NETWORK; RECOGNITION;
D O I
10.3390/electronics11213616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In response to the problems of difficult identification of degradation stage start points and inadequate extraction of degradation features in the current rolling bearing remaining life prediction method, a rolling bearing remaining life prediction method based on multi-scale feature extraction and attention mechanism is proposed. Firstly, this paper takes the normalized bearing vibration signal as input and adopts a quadratic function as the RUL prediction label, avoiding identifying the degradation stage start point. Secondly, the spatial and temporal features of the bearing vibration signal are extracted using the dilated convolutional neural network and LSTM network, respectively, and the channel attention mechanism is used to assign weights to each degradation feature to effectively use multi-scale information. Finally, the mapping of bearing degradation features to remaining life labels is achieved through a fully connected layer for the RUL prediction of bearings. The proposed method is validated using the PHM 2012 Challenge bearing dataset, and the experimental results show that the predictive performance of the proposed method is superior to that of other RUL prediction methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040
  • [32] Pedestrian detection algorithm based on multi-scale feature extraction and attention feature fusion
    Xia, Hao
    Ma, Jun
    Ou, Jiayu
    Lv, Xinyao
    Bai, Chengjie
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [33] A Synthetic Feature Processing Method for Remaining Useful Life Prediction of Rolling Bearings
    Mi, Jinhua
    Liu, Lulu
    Zhuang, Yonghao
    Bai, Libing
    Li, Yan-Feng
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (01) : 125 - 136
  • [34] Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings
    Zhao, Huimin
    Liu, Haodong
    Jin, Yang
    Dang, Xiangjun
    Deng, Wu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [35] A Multi-Scale Natural Scene Text Detection Method Based on Attention Feature Extraction and Cascade Feature Fusion
    Li, Nianfeng
    Wang, Zhenyan
    Huang, Yongyuan
    Tian, Jia
    Li, Xinyuan
    Xiao, Zhiguo
    SENSORS, 2024, 24 (12)
  • [36] SSD with multi-scale feature fusion and attention mechanism
    Liu, Qiang
    Dong, Lijun
    Zeng, Zhigao
    Zhu, Wenqiu
    Zhu, Yanhui
    Meng, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [37] SSD with multi-scale feature fusion and attention mechanism
    Qiang Liu
    Lijun Dong
    Zhigao Zeng
    Wenqiu Zhu
    Yanhui Zhu
    Chen Meng
    Scientific Reports, 13 (1)
  • [38] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [39] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [40] Multi-Scale CNN based on Attention Mechanism for Rolling Bearing Fault Diagnosis
    Hao, Yijia
    Wang, Huan
    Liu, Zhiliang
    Han, Haoran
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,