Commutants of reflexive algebras and classification of completely distributive subspace lattices

被引:0
|
作者
Li, PT [1 ]
Lu, SJ
Ma, JP
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Dept Math, Nanjing 210016, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
reflexive algebras; commutants; complete distributivity; comparable elements; rank one operators;
D O I
10.1090/S0002-9939-03-07325-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a subspace lattice on a normed space X containing a nontrivial comparable element. If T commutes with all the operators in AlgL, then there exists a scalar lambda such that (T - lambdaI)(2) = 0. Furthermore, we classify the class of completely distributive subspace lattices into subclasses called Type I-(n), Type II(n) and Type III, respectively. It is shown that nontrivial nests or, more generally, completely distributive subspace lattices with a comparable element are Type I-(1), and that nontrivial atomic Boolean subspace lattices are Type II(0).
引用
收藏
页码:2005 / 2012
页数:8
相关论文
共 50 条
  • [41] Algebraic isomorphisms and finite distributive subspace lattices
    Panaia, O
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 1033 - 1048
  • [42] Distributive lattices of varieties of Novikov algebras
    Vladimir Dotsenko
    Bekzat Zhakhayev
    manuscripta mathematica, 2025, 176 (2)
  • [43] Chain algebras of finite distributive lattices
    Oleksandra Gasanova
    Lisa Nicklasson
    Journal of Algebraic Combinatorics, 2024, 59 : 473 - 494
  • [44] TENSOR-PRODUCTS OF REFLEXIVE SUBSPACE LATTICES
    HOPENWASSER, A
    MICHIGAN MATHEMATICAL JOURNAL, 1984, 31 (03) : 359 - 370
  • [45] Non-Operator Reflexive Subspace Lattices
    Klis-Garlicka, Kamila
    Mueller, Vladimir
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (04) : 595 - 599
  • [46] Non-Operator Reflexive Subspace Lattices
    Kamila Kliś-Garlicka
    Vladimir Müller
    Integral Equations and Operator Theory, 2008, 62 : 595 - 599
  • [47] THE TENSOR PRODUCT FORMULA FOR REFLEXIVE SUBSPACE LATTICES
    HARRISON, KJ
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03): : 308 - 316
  • [48] Non-reflexive pentagon subspace lattices
    Lambrou, MS
    Longstaff, WE
    STUDIA MATHEMATICA, 1997, 125 (02) : 187 - 199
  • [49] VARIETIES WITH MODULAR AND DISTRIBUTIVE LATTICES OF SYMMETRICAL OR REFLEXIVE RELATIONS
    CHAJDA, I
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (04) : 623 - 630
  • [50] Pointwise Logic on Completely Distributive Lattices and Approximate Reasoning
    Zheng, Yalin
    Yang, Guang
    Zheng, Jing
    Xing, Jinsheng
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 386 - +