Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytesa systematic review

被引:47
|
作者
Eschenhagen, Thomas [1 ,2 ]
Carrier, Lucie [1 ,2 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Inst Expt Pharmacol & Toxicol, Hamburg, Germany
[2] DZHK German Ctr Cardiovasc Res, Partner Site Hamburg Kiel Lubeck, Hamburg, Germany
来源
基金
欧洲研究理事会;
关键词
hiPSC; Disease modelling; Cardiomyopathy; Quantitative phenotypes; BINDING-PROTEIN-C; TROPONIN-T MUTATIONS; HYPERTROPHIC CARDIOMYOPATHY; DILATED CARDIOMYOPATHY; ATRIAL-FIBRILLATION; MYOSIN MUTATIONS; BARTH SYNDROME; PATIENT; MUTANT; DISEASE;
D O I
10.1007/s00424-018-2214-0
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Human-induced pluripotent stem cells (hiPSC) can be differentiated to cardiomyocytes at high efficiency and are increasingly used to study cardiac disease in a human context. This review evaluated 38 studies on hypertrophic (HCM) and dilated cardiomyopathy (DCM) of different genetic causes asking to which extent published data allow the definition of an in vitro HCM/DCM hiPSC-CM phenotype. The data are put in context with the prevailing hypotheses on HCM/DCM dysfunction and pathophysiology. Relatively consistent findings in HCM not reported in DCM were larger cell size (156 +/- 85%, n=15), more nuclear localization of nuclear factor of activated T cells (NFAT; 175 +/- 65%, n=3), and higher -myosin heavy chain gene expression levels (500 +/- 547%, n=8) than respective controls. Conversely, DCM lines showed consistently less force development than controls (47 +/- 23%, n=9), while HCM forces scattered without clear trend. Both HCM and DCM lines often showed sarcomere disorganization, higher NPPA/NPPB expression levels, and arrhythmic beating behaviour. The data have to be taken with the caveat that reporting frequencies of the various parameters (e.g. cell size, NFAT expression) differ widely between HCM and DCM lines, in which data scatter is large and that only 9/38 studies used isogenic controls. Taken together, the current data provide interesting suggestions for disease-specific phenotypes in HCM/DCM hiPSC-CM but indicate that the field is still in its early days. Systematic, quantitative comparisons and robust, high content assays are warranted to advance the field.
引用
收藏
页码:755 / 768
页数:14
相关论文
共 50 条
  • [1] Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes—a systematic review
    Thomas Eschenhagen
    Lucie Carrier
    Pflügers Archiv - European Journal of Physiology, 2019, 471 : 755 - 768
  • [2] Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes
    De Assuncao, Thiago M.
    Sun, Yan
    Jalan-Sakrikar, Nidhi
    Drinane, Mary C.
    Huang, Bing Q.
    Li, Ying
    Davila, Jaime I.
    Wang, Ruisi
    O'Hara, Steven P.
    Lomberk, Gwen A.
    Urrutia, Raul A.
    Ikeda, Yasuhiro
    Huebert, Robert C.
    LABORATORY INVESTIGATION, 2015, 95 (06) : 684 - 696
  • [3] Assessment of Cardiomyocyte Contraction in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Pointon, Amy
    Harmer, Alexander R.
    Dale, Ian L.
    Abi-Gerges, Najah
    Bowes, Joanne
    Pollard, Christopher
    Garside, Helen
    TOXICOLOGICAL SCIENCES, 2015, 144 (02) : 227 - 237
  • [4] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    A. D. Podgurskaya
    M. M. Slotvitsky
    V. A. Tsvelaya
    S. R. Frolova
    S. G. Romanova
    V. A. Balashov
    K. I. Agladze
    Scientific Reports, 11
  • [5] Metabolism of Fentanyl and Acetylfentanyl in Human-Induced Pluripotent Stem Cell-Derived Hepatocytes
    Kanamori, Tatsuyuki
    Iwata, Yuko Togawa
    Segawa, Hiroki
    Yamamuro, Tadashi
    Kuwayama, Kenji
    Tsujikawa, Kenji
    Inoue, Hiroyuki
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2018, 41 (01) : 106 - 114
  • [6] Establishment of autaptic culture with human-induced pluripotent stem cell-derived astrocytes
    Uchino, Kouya
    Tanaka, Yasuyoshi
    Kawaguchi, Sayaka
    Kubota, Kaori
    Watanabe, Takuya
    Katsurabayashi, Shutaro
    Hirose, Shinichi
    Iwasaki, Katsunori
    ISCIENCE, 2022, 25 (08)
  • [7] Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders
    Kumar, Mandeep
    Nhung Thi Phuong Nguyen
    Milanese, Marco
    Bonanno, Giambattista
    BIOMOLECULES, 2022, 12 (03)
  • [8] Human-induced pluripotent stem cell-derived cardiomyocytes: phenotypic and functional variability
    Koivumaki, J.
    Nikolay, N.
    Tuomainen, T.
    Takalo, J.
    Tavi, P.
    ACTA PHYSIOLOGICA, 2017, 219 : 4 - 4
  • [9] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    Podgurskaya, A. D.
    Slotvitsky, M. M.
    Tsvelaya, V. A.
    Frolova, S. R.
    Romanova, S. G.
    Balashov, V. A.
    Agladze, K. I.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for TNNT2 Δ160E-Induced Cardiomyopathy
    Kondo, Takumi
    Higo, Shuichiro
    Shiba, Mikio
    Kohama, Yasuaki
    Kameda, Satoshi
    Tabata, Tomoka
    Inoue, Hiroyuki
    Okuno, Shota
    Ogawa, Shou
    Nakamura, Satoki
    Takeda, Maki
    Ito, Emiko
    Li, Junjun
    Liu, Li
    Kuramoto, Yuki
    Lee, Jong-Kook
    Takashima, Seiji
    Miyagawa, Shigeru
    Sawa, Yoshiki
    Hikoso, Shungo
    Sakata, Yasushi
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2022, 15 (05): : 429 - 443