Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes

被引:0
|
作者
A. D. Podgurskaya
M. M. Slotvitsky
V. A. Tsvelaya
S. R. Frolova
S. G. Romanova
V. A. Balashov
K. I. Agladze
机构
[1] Moscow Institute of Physics and Technology (National Research University),
[2] M.F. Vladimirsky Moscow Regional Clinical Research Institute,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cyclophosphamide (CP) is an anticancer drug, an alkylating agent. Cardiotoxicity of CP is associated with one of its metabolites, acrolein, and clinical cardiotoxicity manifestations are described for cases of taking CP in high doses. Nevertheless, modern arrhythmogenicity prediction assays in vitro include evaluation of beat rhythm and rate as well as suppression of cardiac late markers after acute exposure to CP, but not its metabolites. The mechanism of CP side effects when taken at low doses (i.e., < 100 mg/kg), especially at the cellular level, remains unclear. In this study conduction properties and cytoskeleton structure of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from a healthy donor under CP were evaluated. Arrhythmogenicity testing including characterization of 3 values: conduction velocity, maximum capture rate (MCR) measurements and number of occasions of re-entry on a standard linear obstacle was conducted and revealed MCR decrease of 25% ± 7% under CP. Also, conductivity area reduced by 34 ± 15%. No effect of CP on voltage-gated ion channels was found. Conduction changes (MCR and conductivity area decrease) are caused by exposure time-dependent alpha-actinin disruption detected both in hiPSC-CMs and neonatal ventricular cardiomyocytes in vitro. Deviation from the external stimulus frequency and appearance of non-conductive areas in cardiac tissue under CP is potentially arrhythmogenic and could develop arrhythmic effects in vivo.
引用
收藏
相关论文
共 50 条
  • [1] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    Podgurskaya, A. D.
    Slotvitsky, M. M.
    Tsvelaya, V. A.
    Frolova, S. R.
    Romanova, S. G.
    Balashov, V. A.
    Agladze, K. I.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Assessment of Cardiomyocyte Contraction in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Pointon, Amy
    Harmer, Alexander R.
    Dale, Ian L.
    Abi-Gerges, Najah
    Bowes, Joanne
    Pollard, Christopher
    Garside, Helen
    [J]. TOXICOLOGICAL SCIENCES, 2015, 144 (02) : 227 - 237
  • [3] Human-induced pluripotent stem cell-derived cardiomyocytes: phenotypic and functional variability
    Koivumaki, J.
    Nikolay, N.
    Tuomainen, T.
    Takalo, J.
    Tavi, P.
    [J]. ACTA PHYSIOLOGICA, 2017, 219 : 4 - 4
  • [4] Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes
    Reilly, Louise
    Munawar, Saba
    Zhang, Jianhua
    Crone, Wendy C. C.
    Eckhardt, Lee L. L.
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [5] Cardiac proarrhythmic risk assessment using human-induced pluripotent stem cell-derived cardiomyocytes
    Albert, Verena
    Jahic, Mirza
    Servant, Nicole
    [J]. JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2023, 123
  • [6] Modeling Short QT Syndrome Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    El-Battrawy, Ibrahim
    Lan, Huan
    Cyganek, Lukas
    Zhao, Zhihan
    Li, Xin
    Buljubasic, Fanis
    Lang, Siegfried
    Yucel, Gokhan
    Sattler, Katherine
    Zimmermann, Wolfram-Hubertus
    Utikal, Jochen
    Wieland, Thomas
    Ravens, Ursula
    Borggrefe, Martin
    Zhou, Xiao-Bo
    Akin, Ibrahim
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (07):
  • [7] Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype
    Ivashchenko, Christine Y.
    Pipes, Gordon C.
    Lozinskaya, Irina M.
    Lin, Zuojun
    Xu Xiaoping
    Needle, Saul
    Grygielko, Eugene T.
    Hu, Erding
    Toomey, John R.
    Lepore, John J.
    Willette, Robert N.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2013, 305 (06): : H913 - H922
  • [8] A simple protocol to produce mature human-induced pluripotent stem cell-derived cardiomyocytes
    Knight, Walter E.
    Cao, Yingqiong
    Dillon, Phoebe
    Song, Kunhua
    [J]. STAR PROTOCOLS, 2021, 2 (04):
  • [9] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Yiqi Gong
    Li Yang
    Jun Tang
    Jijian Zheng
    Nevin Witman
    Philipp Jakob
    Yao Tan
    Minglu Liu
    Ying Chen
    Huijing Wang
    Wei Fu
    Wei Wang
    [J]. Cardiovascular Toxicology, 2022, 22 : 141 - 151
  • [10] Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Gong, Yiqi
    Yang, Li
    Tang, Jun
    Zheng, Jijian
    Witman, Nevin
    Jakob, Philipp
    Tan, Yao
    Liu, Minglu
    Chen, Ying
    Wang, Huijing
    Fu, Wei
    Wang, Wei
    [J]. CARDIOVASCULAR TOXICOLOGY, 2022, 22 (02) : 141 - 151