Which continuous-time model is most appropriate for exchange rates?

被引:6
|
作者
Erdemlioglu, Deniz [1 ]
Laurent, Sebastien [2 ,4 ,5 ]
Neely, Christopher J. [3 ]
机构
[1] IESEG Sch Management LEM CNRS, Lille, France
[2] Aix Marseille Grad Sch Management IAE, Aix En Provence, France
[3] Fed Reserve Bank St Louis, Div Res, St Louis, MO USA
[4] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Aix En Provence, France
[5] EHESS, Marseille, France
关键词
Exchange rates; Brownian motion; Volatility; Jumps; Intraday periodicity; High-frequency data; HIGH-FREQUENCY DATA; CHANGED LEVY PROCESSES; FOREIGN-EXCHANGE; STOCHASTIC VOLATILITY; CURRENCY OPTIONS; DOLLAR VOLATILITY; ASSET RETURNS; JUMPS; INTRADAY; COMPONENTS;
D O I
10.1016/j.jbankfin.2015.09.014
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper evaluates the most appropriate ways to model diffusion and jump features of high-frequency exchange rates in the presence of intraday periodicity in volatility. We show that periodic volatility distorts the size and power of conventional tests of Brownian motion, jumps and (in)finite activity. We propose a correction for periodicity that restores the properties of the test statistics. Empirically, the most plausible model for 1-min exchange rate data features Brownian motion and both finite activity and infinite activity jumps. Test rejection rates vary over time, however, indicating time variation in the data generating process. We discuss the implications of results for market microstructure and currency option pricing. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:S256 / S268
页数:13
相关论文
共 50 条
  • [41] A continuous-time strategic capacity planning model
    Huh, WT
    Roundy, RO
    NAVAL RESEARCH LOGISTICS, 2005, 52 (04) : 329 - 343
  • [42] A Minimal Continuous-Time Markov Pharmacometric Model
    Schindler, Emilie
    Karlsson, Mats O.
    AAPS JOURNAL, 2017, 19 (05): : 1424 - 1435
  • [43] Optimal and superoptimal rates of frequency polygons for continuous-time processes
    Lejeune, FX
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (01) : 59 - 62
  • [44] CONTINUOUS-TIME POPULATION MODEL WITH POISSON RECRUITMENT
    MCCLEAN, SI
    JOURNAL OF APPLIED PROBABILITY, 1976, 13 (02) : 348 - 354
  • [45] CONTINUOUS-TIME STOCHASTIC-MODEL SIMPLIFICATION
    TUGNAIT, JK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) : 993 - 996
  • [46] A spreadsheet method for continuous-time model identification
    Aliane, Nourdine
    Fernandez, Javier
    Bemposta, Sergio
    MEASUREMENT, 2013, 46 (01) : 680 - 687
  • [47] A NOTE ON A CONTINUOUS-TIME MARKOV MANPOWER MODEL
    DAVIES, GS
    JOURNAL OF APPLIED PROBABILITY, 1985, 22 (04) : 932 - 938
  • [48] Subspace model identification for continuous-time systems
    Yang, ZJ
    Sagara, S
    Wada, K
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1567 - 1572
  • [49] A continuous-time search model with finite horizon
    Stadje, W.
    RAIRO Recherche Operationnelle, 1996, 30 (03): : 233 - 245
  • [50] Analysis of a continuous-time adaptive voter model
    Kravitzch, Emmanuel
    Hayel, Yezekael
    Varma, Vineeth S.
    Berthet, Antoine O.
    PHYSICAL REVIEW E, 2023, 107 (05)