Hydrothermal gasification of pure and crude glycerol in supercritical water: A comparative study

被引:26
|
作者
Dianningrum, Laras W. [1 ,2 ]
Choi, Haemin [1 ]
Kim, Yunje [1 ]
Jung, Kwang-Deog [1 ]
Susanti, Ratna F. [3 ]
Kim, Jaehoon [4 ,5 ]
Sang, Byung-In [6 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea
[2] Univ Sci & Technol, Dept Clean Energy & Chem Engn, Taejon 305333, South Korea
[3] Parahyangan Catholic Univ, Ind Technol Fac, Dept Chem Engn, Bandung 40141, West Java, Indonesia
[4] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, Gyeong Gi Do, South Korea
[5] SAINT, Suwon 440746, Gyeong Gi Do, South Korea
[6] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Hydrogen; Crude glycerol; Supercritical water; FAMEs; Batch system; Continuous system; BIOMASS GASIFICATION; HYDROGEN-PRODUCTION; COKE FORMATION; HEATING RATE; GLUCOSE; PYROLYSIS; PRODUCTS; HYDROPYROLYSIS; CONVERSION; KINETICS;
D O I
10.1016/j.ijhydene.2013.10.139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A comparative gasification study between pure glycerol and two different kinds of crude glycerol is conducted in supercritical water under various operating parameters to investigate the effect of different compositions in crude glycerol on the gasification behaviors. Among various types of impurities in the crude glycerol, fatty acid methyl esters (FAMEs) exhibit a negative effect on the gas yield and gasification efficiency of crude glycerol in a batch apparatus due to the enhanced tar/char formation. At 650 degrees C and 5 wt%, gasification in a continuous apparatus exhibits H-2 yields of 26.44 and 35.85 mmol/g feed in 1 min for both types of crude glycerol, which could not be achieved by the batch system even with the reaction time extended up to 120 min. A shorter duration in the non-supercritical state may be the dominant parameter that leads to complete conversion of FAMEs and total gasification of crude glycerol using the continuous system. Crown Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1262 / 1273
页数:12
相关论文
共 50 条
  • [41] Gasification of cyanobacterial in supercritical water
    Zhang, Huiwen
    Zhu, Wei
    Xu, Zhirong
    Gong, Miao
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (22) : 2788 - 2795
  • [42] Gasification of glucose in Supercritical water
    Lee, IG
    Kim, MS
    Ihm, SK
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (05) : 1182 - 1188
  • [43] Biomass gasification in supercritical water
    Antal, MJ
    Allen, SG
    Schulman, D
    Xu, XD
    Divilio, RJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) : 4040 - 4053
  • [44] Supercritical water gasification of hydrochar
    Castello, Daniele
    Kruse, Andrea
    Fiori, Luca
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (10): : 1864 - 1875
  • [45] Biomass gasification in supercritical water
    Savage, Phillip E.
    Guan, Qingqing
    Huelsman, Chad
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [46] Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol
    Torres, Daniel
    Arcelus-Arrillaga, Pedro
    Millan, Marcos
    Luis Pinilla, Jose
    Suelves, Isabel
    NANOMATERIALS, 2017, 7 (12):
  • [47] Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery
    Reddy, Sivamohan N.
    Nanda, Sonil
    Kozinski, Janusz A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 113 : 17 - 27
  • [48] Co-Gasification of Crude Glycerol/Animal Fat Mixtures
    Almeida, Ana
    Pilao, Rosa
    Ribeiro, Albina
    Ramalho, Elisa
    Pinho, Carlos
    ENERGIES, 2020, 13 (07)
  • [49] Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification
    Yan, Mi
    Liu, Yu
    Song, Yucai
    Xu, Aiming
    Zhu, Gaojun
    Jiang, Jiahao
    Hantoko, Dwi
    ENERGY, 2022, 242
  • [50] STUDY ON CO-GASIFICATION OF SLUDGE AND COAL IN SUPERCRITICAL WATER
    Li, Qiong
    Zhang, Li
    Yu, Tao
    Chen, Leishan
    Wang, Yanbo
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (08): : 5555 - 5558