New method for the time series homogenization of observed precipitation (PP) totals is presented; this method is a unit of the ACMANT software package. ACMANT is a relative homogenization method; minimum four time series with adequate spatial correlations are necessary for its use. The detection of inhomogeneities (IHs) is performed with fitting optimal step function, while the calculation of adjustment terms is based on the minimization of the residual variance in homogenized datasets. Together with the presentation of PP homogenization with ACMANT, some peculiarities of PP homogenization as, for instance, the frequency and seasonal variation of IHs in observed PP data and their relation to the performance of homogenization methods are discussed. In climatic regions of snowy winters, ACMANT distinguishes two seasons, namely, rainy season and snowy season, and the seasonal IHs are searched with bivariate detection. ACMANT is a fully automatic method, is freely downloadable from internet and treats either daily or monthly input. Series of observed data in the input dataset may cover different periods, and the occurrence of data gaps is allowed. False zero values instead of missing data code or physical outliers should be corrected before running ACMANT. Efficiency tests indicate that ACMANT belongs to the best performing methods, although further comparative tests of automatic homogenization methods are needed to confirm or reject this finding.