Indestructibility of compact spaces

被引:5
|
作者
Dias, Rodrigo R. [1 ,2 ]
Tall, Franklin D. [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
[2] Minist Educ Brazil, Capes Fdn, BR-70040020 Brasilia, DF, Brazil
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Compact; Indestructible; Selection principles; Topological games; Inaccessible cardinal; Borel's Conjecture; TOPOLOGICAL GAMES; CARDINALITY;
D O I
10.1016/j.topol.2013.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we investigate which compact spaces remain compact under countably closed forcing. We prove that, assuming the Continuum Hypothesis, the natural generalizations to omega(1)-sequences of the selection principle and topological game versions of the Rothberger property are not equivalent, even for compact spaces. We also show that Tall and Usuba's "N-1-Borel Conjecture" is equiconsistent with the existence of an inaccessible cardinal. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2411 / 2426
页数:16
相关论文
共 50 条
  • [31] COMPACT SPACES AND COMPACTIFICATIONS
    SALBANY, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) : 274 - 280
  • [32] ACCESSIBLE COMPACT SPACES
    RAJAGOPALAN, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A177 - A177
  • [33] HOMOTOPICALLY COMPACT SPACES
    BENNETT, R
    BORSUK, K
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (10): : 865 - 869
  • [34] COMPACT RINGED SPACES
    MULVEY, CJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (05): : 229 - 231
  • [35] COMPACT ULTRAMETRIC SPACES
    FEINBERG, VZ
    DOKLADY AKADEMII NAUK SSSR, 1974, 214 (05): : 1041 - 1044
  • [36] ADHERENT COMPACT SPACES
    KRYSTOCK, RL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (04) : 1117 - 1125
  • [37] RIM COMPACT SPACES
    WALLACE, AD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (02) : 147 - 147
  • [38] Tachyons in compact spaces
    Suyama, T
    PARTICLES, STRINGS, AND COSMOLOGY, 2005, 805 : 383 - 386
  • [39] A note on λ-compact spaces
    Karamzadeh, O. A. S.
    Namdari, M.
    Siavoshi, M. A.
    MATHEMATICA SLOVACA, 2013, 63 (06) : 1371 - 1380
  • [40] RIM COMPACT SPACES
    PEREGUDOV, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (03): : 58 - 59