Application of Convolutional Networks in Clothing Design from the Perspective of Deep Learning

被引:1
|
作者
Yi, Cheng [1 ]
机构
[1] JiangXi Inst Fash Technol, Nanchang 330201, Jiangxi, Peoples R China
关键词
D O I
10.1155/2022/6173981
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A convolutional neural network (CNN) is a machine learning method under supervised learning. It not only has the advantages of high fault tolerance and self-learning ability of other traditional neural networks but also has the advantages of weight sharing, automatic feature extraction, and the combination of the input image and network. It avoids the process of data reconstruction and feature extraction in traditional recognition algorithms. For example, as an unsupervised generation model, the convolutional confidence network (CCN) generated by the combination of convolutional neural network and confidence network has been successfully applied to face feature extraction.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Clothing Classification Using Convolutional Neural Networks
    Hodecker, Andrei
    Fernandes, Anita M. R.
    Steffens, Alisson
    Crocker, Paul
    Leithardt, Valderi R. Q.
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [32] Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
    Kim, D. H.
    MacKinnon, T.
    CLINICAL RADIOLOGY, 2018, 73 (05) : 439 - 445
  • [33] Clothing fabric reengineering design from the perspective of analytical design aesthetics
    Fu, Shan
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 76 - 76
  • [34] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [35] Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
    Shen, Li
    Lin, Zhouchen
    Huang, Qingming
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 467 - 482
  • [36] Residual learning of deep convolutional neural networks for image denoising
    Shan, Chuanhui
    Guo, Xirong
    Ou, Jun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2809 - 2818
  • [37] Respiratory Sounds Feature Learning with Deep Convolutional Neural Networks
    Liu, Yongpeng
    Lin, Yusong
    Gao, Shan
    Zhang, Hongpo
    Wang, Zongmin
    Gao, Yang
    Chen, Guanling
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 170 - 177
  • [38] Deep Learning Convolutional Neural Networks with Dropout - a Parallel Approach
    Shen, Jingyi
    Shafiq, M. Omair
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 572 - 577
  • [39] Learning Deep Graph Representations via Convolutional Neural Networks
    Ye, Wei
    Askarisichani, Omid
    Jones, Alex
    Singh, Ambuj
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2268 - 2279
  • [40] Curriculum Learning for Depth Estimation with Deep Convolutional Neural Networks
    Surendranath, Ajay
    Jayagopi, Dinesh Babu
    PROCEEDINGS OF THE 2ND MEDITERRANEAN CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (MEDPRAI-2018), 2018, : 95 - 100