THE VORONOVSKAJA TYPE THEOREM FOR A GENERAL CLASS OF SZASZ-MIRAKJAN OPERATORS

被引:3
|
作者
Pop, Ovidiu T. [1 ]
Miclaus, Dan [2 ]
Barbosu, Dan [2 ]
机构
[1] Natl Coll Mihai Eminescu, Satu Mare 440014, Romania
[2] North Univ Baia Mare, Dept Math & Comp Sci, Baia Mare 430122, Romania
关键词
Voronovskaja's type theorem; Szasz-Mirakjan operators; positivity; linearity; modulus of continuity;
D O I
10.18514/MMN.2013.374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to defining a new general class of linear and positive operators depending on a certain function phi. This new class of linear and positive operators generalizes the Szasz-Mirakjan operators. For this new class of operators we establish a convergence theorem and the evaluation of the rate of convergence, in terms of the modulus of continuity.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [21] Modified Szasz-Mirakjan operators of integral form
    Paltanea, Radu
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (03) : 378 - 385
  • [22] APPROXIMATION BY COMPLEX MODIFIED SZASZ-MIRAKJAN OPERATORS
    Cetin, Nursel
    Ispir, Nurhayat
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (03) : 355 - 372
  • [23] Approximation Properties of an Extended Family of the Szasz-Mirakjan Beta-Type Operators
    Srivastava, Hari Mohan
    Icoz, Gurhan
    Cekim, Bayram
    [J]. AXIOMS, 2019, 8 (04)
  • [24] Approximation by modified Szasz-Mirakjan operators on weighted spaces
    Ispir, N
    Atakut, Ç
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (04): : 571 - 578
  • [25] Further approximations on Durrmeyer modification of Szasz-Mirakjan operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishra, Vishnu Narayan
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (05): : 1306 - 1324
  • [26] Local and global results for modified Szasz-Mirakjan operators
    Gandhi, R. B.
    Deepmala
    Mishra, Vishnu Narayan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2491 - 2504
  • [27] ON THE APPROXIMATION OF CONTINUOUS-FUNCTIONS BY SZASZ-MIRAKJAN OPERATORS
    AMANOV, NT
    [J]. DOKLADY AKADEMII NAUK SSSR, 1987, 293 (01): : 11 - 14
  • [28] On a Kantorovich Variant of (p,q)-Szasz-Mirakjan Operators
    Mursaleen, M.
    Alotaibi, Abdullah
    Ansari, Khursheed J.
    [J]. JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [29] GLOBAL APPROXIMATION RESULTS FOR MODIFIED SZASZ-MIRAKJAN OPERATORS
    Duman, Oktay
    Ozarslan, Mehmet Ali
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 75 - 86
  • [30] Approximation with an arbitrary order by generalized Szasz-Mirakjan operators
    Gal, Sorin G.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (01): : 77 - 81