THE VORONOVSKAJA TYPE THEOREM FOR A GENERAL CLASS OF SZASZ-MIRAKJAN OPERATORS

被引:3
|
作者
Pop, Ovidiu T. [1 ]
Miclaus, Dan [2 ]
Barbosu, Dan [2 ]
机构
[1] Natl Coll Mihai Eminescu, Satu Mare 440014, Romania
[2] North Univ Baia Mare, Dept Math & Comp Sci, Baia Mare 430122, Romania
关键词
Voronovskaja's type theorem; Szasz-Mirakjan operators; positivity; linearity; modulus of continuity;
D O I
10.18514/MMN.2013.374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to defining a new general class of linear and positive operators depending on a certain function phi. This new class of linear and positive operators generalizes the Szasz-Mirakjan operators. For this new class of operators we establish a convergence theorem and the evaluation of the rate of convergence, in terms of the modulus of continuity.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [1] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    [J]. DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115
  • [2] THE VORONOVSKAJA TYPE THEOREM FOR THE SZASZ-MIRAKJAN-KANTOROVICH OPERATORS
    Miclaus, Dan
    [J]. JOURNAL OF SCIENCE AND ARTS, 2010, (02): : 257 - 260
  • [3] Approximation by Szasz-Mirakjan Type Operators in L’
    周定轩
    [J]. 数学进展, 1990, (01) : 118 - 120
  • [4] UNIFORM APPROXIMATION BY SZASZ-MIRAKJAN TYPE OPERATORS
    TOTIK, V
    [J]. ACTA MATHEMATICA HUNGARICA, 1983, 41 (3-4) : 291 - 307
  • [5] Approximation by a generalization of Szasz-Mirakjan type operators
    Siddiqui, Mohammed Arif
    Gupta, Nandita
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04): : 575 - 583
  • [6] The saturation class for linear combinations of Szasz-Mirakjan operators
    Xie, Linsen
    Wang, Shuli
    Zhao, Kaifei
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)
  • [7] An Extension of the Szasz-Mirakjan Operators
    Mortici, C.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 137 - 144
  • [8] Approximation by Associated GBS Operators of Szasz-Mirakjan Type Operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishra, Vishnu Narayan
    [J]. FILOMAT, 2021, 35 (14) : 4789 - 4809
  • [9] Local approximation results for Szasz-Mirakjan type operators
    Oezarslan, Mehmet Ali
    Duman, Oktay
    [J]. ARCHIV DER MATHEMATIK, 2008, 90 (02) : 144 - 149
  • [10] Dunkl analogue of Szasz-Mirakjan operators of blending type
    Deshwal, Sheetal
    Agrawal, P. N.
    Araci, Serkan
    [J]. OPEN MATHEMATICS, 2018, 16 : 1344 - 1356