Local convergence of quasi-Newton methods under metric regularity

被引:34
|
作者
Artacho, F. J. Aragon [1 ]
Belyakov, A. [2 ,3 ]
Dontchev, A. L. [4 ]
Lopez, M. [5 ]
机构
[1] Univ Luxembourg, Syst Biochem Grp, Luxembourg Ctr Syst Biomed, L-4362 Esch Sur Alzette, Luxembourg
[2] Vienna Univ Technol, Inst Math Methods Econ, A-1040 Vienna, Austria
[3] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 119192, Russia
[4] Math Reviews, Ann Arbor, MI 48107 USA
[5] Univ Alicante, Dept Stat & Operat Res, E-03080 Alicante, Spain
关键词
Generalized equation; Quasi-Newton method; Broyden update; Strong metric subregularity; Metric regularity; Strong metric regularity; q-Superlinear convergence; SUPERLINEAR CONVERGENCE; BROYDENS METHOD;
D O I
10.1007/s10589-013-9615-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis-Mor, condition for q-superlinear convergence. Simple numerical examples illustrate the results.
引用
收藏
页码:225 / 247
页数:23
相关论文
共 50 条
  • [31] Explicit Convergence Rates of Greedy and Random Quasi-Newton Methods
    Lin, Dachao
    Ye, Haishan
    Zhang, Zhihua
    Journal of Machine Learning Research, 2022, 23
  • [32] Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
    Liu, Zhuanghua
    Luo, Luo
    Low, Bryan Kian Hsiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14097 - 14105
  • [33] New Results on Superlinear Convergence of Classical Quasi-Newton Methods
    Anton Rodomanov
    Yurii Nesterov
    Journal of Optimization Theory and Applications, 2021, 188 : 744 - 769
  • [34] Convergence of quasi-Newton methods for solving constrained generalized equations*
    Andreani, Roberto
    Carvalho, Rui M.
    Secchin, Leonardo D.
    Silva, Gilson N.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [35] New Results on Superlinear Convergence of Classical Quasi-Newton Methods
    Rodomanov, Anton
    Nesterov, Yurii
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (03) : 744 - 769
  • [36] A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    FONTECILLA, R
    STEIHAUG, T
    TAPIA, RA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1133 - 1151
  • [37] Explicit Convergence Rates of Greedy and Random Quasi-Newton Methods
    Lin, Dachao
    Ye, Haishan
    Zhang, Zhihua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [38] THE LOCAL CONVERGENCE ANALYSIS FOR IN-EXACT QUASI-NEWTON METHODS FOR OPERATOR EQUATIONS IN HILBERT SPACE
    Wang, Juan
    Li, Rui
    ICIM'2016: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANAGEMENT, 2016, : 453 - 456
  • [39] UPDATING FOR THE METRIC IN THE REDUCED QUASI-NEWTON METHODS IN OPTIMIZATION WITH EQUALITY CONSTRAINTS
    GILBERT, JC
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1988, 22 (02): : 251 - 288
  • [40] QUASI-NEWTON METHODS FOR SADDLEPOINTS
    BIEGLERKONIG, F
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (04) : 393 - 399