Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas

被引:3
|
作者
Zhang, Ya-Hui [1 ]
Li, Dingping [1 ]
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 05期
关键词
GROUND-STATE ENERGY; EINSTEIN CONDENSATION; HARD SPHERES; TEMPERATURE; SYSTEM; TRANSITION;
D O I
10.1103/PhysRevA.88.053604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and gapless. From improved Phi-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical temperature with other conserving and gapless theories.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gapless Hartree-Fock-Bogoliubov approximation for bose gases
    Yukalov, V. I.
    Kleinert, H.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [2] Hartree-Fock-Bogoliubov theory of a charged Bose gas at finite temperature
    Davoudi, B
    Minguzzi, A
    Tosi, MP
    PHYSICAL REVIEW B, 2002, 65 (14) : 1 - 7
  • [3] Collective excitations of a dilute Bose gas at finite temperature: time dependent Hartree-Fock-Bogoliubov theory
    Boudjemaa, Abdelaali
    Guebli, Nadia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [4] Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems
    Tommasini, P
    de Passos, EJV
    Pires, MOC
    Piza, AFRD
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (21) : 3165 - 3181
  • [5] Coupled Hartree-Fock-Bogoliubov kinetic equations for a trapped Bose gas
    Imamovic-Tomasovic, M
    Griffin, A
    PHYSICAL REVIEW A, 1999, 60 (01) : 494 - 503
  • [6] Self-consistent description of Bose-Bose droplets: modified gapless Hartree-Fock-Bogoliubov method
    Zin, Pawel
    Pylak, Maciej
    Idziaszek, Zbigniew
    Gajda, Mariusz
    NEW JOURNAL OF PHYSICS, 2022, 24 (11):
  • [7] A NUMERICAL PERSPECTIVE ON HARTREE-FOCK-BOGOLIUBOV THEORY
    Lewin, Mathieu
    Paul, Severine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 53 - 86
  • [8] Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory
    Alvarado, Claudia D.
    Chiumiento, Eduardo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [9] Three-dimensional Skyrme Hartree-Fock-Bogoliubov solver in coordinate-space representation
    Chen, Mengzhi
    Li, Tong
    Schuetrumpf, Bastian
    Reinhard, Paul-Gerhard
    Nazarewicz, Witold
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 276
  • [10] AN EXTENSION OF THE CRANKED HARTREE-FOCK-BOGOLIUBOV THEORY
    HORIBATA, T
    LETTERE AL NUOVO CIMENTO, 1980, 28 (17): : 578 - 582