Acyclic Chromatic Indices of Planar Graphs with Girth At Least 4

被引:20
|
作者
Shu, Qiaojun [1 ]
Wang, Weifan [1 ]
Wang, Yiqiao [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Beijing Univ Chinese Med, Sch Hlth Management, Beijing 100029, Peoples R China
关键词
acyclic edge coloring; planar graph; girth; maximum degree; EDGE COLORINGS;
D O I
10.1002/jgt.21683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamcik (Math. Slovaca 28 (1978), 139-145) and later Alon et al. (J Graph Theory 37 (2001), 157-167) conjectured that a(G)+2 for any simple graph G with maximum degree . In this article, we confirm this conjecture for planar graphs of girth at least 4. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:386 / 399
页数:14
相关论文
共 50 条
  • [1] Acyclic chromatic indices of planar graphs with girth at least five
    Shu, Qiaojun
    Wang, Weifan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (01) : 140 - 157
  • [2] Acyclic chromatic indices of planar graphs with girth at least five
    Qiaojun Shu
    Weifan Wang
    [J]. Journal of Combinatorial Optimization, 2012, 23 : 140 - 157
  • [3] Acyclic chromatic indices of planar graphs with large girth
    Wang, Weifan
    Shu, Qiaojun
    Wang, Kan
    Wang, Ping
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1239 - 1253
  • [4] Group chromatic number of planar graphs of girth at least 4
    Lai, HJ
    Li, XW
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 51 - 72
  • [5] Acyclic 4-choosability of planar graphs with girth at least 5
    Montassier, Mickael
    [J]. Graph Theory in Paris: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 299 - 310
  • [6] Acyclic edge coloring of planar graphs with girth at least 5
    Hou, Jianfeng
    Wang, Weitao
    Zhang, Xiaoran
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2958 - 2967
  • [7] A new upper bound on the acyclic chromatic indices of planar graphs
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 338 - 354
  • [8] Acyclic colourings of planar graphs with large girth
    Borodin, OV
    Kostochka, AV
    Woodall, DR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 344 - 352
  • [9] Girth and fractional chromatic number of planar graphs
    Pirnazar, A
    Ullman, DH
    [J]. JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 201 - 217
  • [10] On 3-choosable planar graphs of girth at least 4
    Li, Xiangwen
    [J]. DISCRETE MATHEMATICS, 2009, 309 (08) : 2424 - 2431