Fractional integrals on radial functions with applications to weighted inequalities

被引:25
|
作者
Duoandikoetxea, Javier [1 ]
机构
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea, Dept Matemat, Bilbao 48080, Spain
关键词
Fractional integrals; Radial functions; Weighted inequalities; BOUNDS;
D O I
10.1007/s10231-011-0237-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain operators pointwise equivalent to the fractional integral and the maximal fractional operator acting on radial functions. With the aid of these operators we obtain several weighted inequalities, assuming that either the functions or the weights are radial.
引用
收藏
页码:553 / 568
页数:16
相关论文
共 50 条
  • [31] WEIGHTED FRACTIONAL BERNSTEIN'S INEQUALITIES AND THEIR APPLICATIONS
    Dai, Feng
    Tikhonov, Sergey
    JOURNAL D ANALYSE MATHEMATIQUE, 2016, 129 : 33 - 68
  • [32] Weighted fractional Bernstein’s inequalities and their applications
    Feng Dai
    Sergey Tikhonov
    Journal d'Analyse Mathématique, 2016, 129 : 33 - 68
  • [33] Some novel inequalities for Caputo Fabrizio fractional integrals involving (α,s)-convex functions with applications
    Fahad, Asfand
    Nosheen, Ammara
    Khan, Khuram Ali
    Tariq, Maria
    Mabela, Rostin Matendo
    Alzaidi, Ahmed S. M.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 1 - 15
  • [34] Some Midpoint Inequalities for η-Convex Function via Weighted Fractional Integrals
    Chen, Lei
    Nazeer, Waqas
    Ali, Farman
    Botmart, Thongchai
    Mehfooz, Sarah
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [35] Weighted Norm Inequalities for Local Fractional Integrals on Gaussian Measure Spaces
    Haibo Lin
    Shengchen Mao
    Potential Analysis, 2020, 53 : 1377 - 1401
  • [36] Weighted Norm Inequalities for Local Fractional Integrals on Gaussian Measure Spaces
    Lin, Haibo
    Mao, Shengchen
    POTENTIAL ANALYSIS, 2020, 53 (04) : 1377 - 1401
  • [37] Quasi-Convex Functions and Their Inequalities Based on Fractional Integrals
    Yin, Hongping
    Wang, Jingyu
    5TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2020), 2020, 1575
  • [38] Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Shim, Soo Hak
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [39] ON WEIGHTED FRACTIONAL INTEGRALS
    DUGGAL, BP
    KAPUR, ML
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (05): : 576 - 587
  • [40] On Some Hermite-Hadamard Inequalities for Fractional Integrals and their Applications
    Hwang, S. -R.
    Yeh, S. -Y.
    Tseng, K. -L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (03) : 464 - 484