Hartmann modelling in the discrete spatial-frequency domain: application to real-time reconstruction in Adaptive Optics

被引:5
|
作者
Correia, Carlos [1 ]
Kulcsar, Caroline [2 ]
Conan, Jean-Marc [1 ]
Raynaud, Henri-Francois [2 ]
机构
[1] Off Natl Etud & Rech Aerosp, 29 Av Div Leclerc, F-92322 Chatillon, France
[2] Univ Paris 13, Lab Traitement & Transport Informat, F-93430 Villetaneuse, France
来源
ADAPTIVE OPTICS SYSTEMS, PTS 1-3 | 2008年 / 7015卷
关键词
Adaptive Optics; wave-front reconstruction; modelling in the spatial-frequency domain; Fourier-domain filtering; efficient algorithms; real-time systems; Extremely Large Telescopes; WAVE-FRONT RECONSTRUCTION; FOURIER-TRANSFORM; DIFFERENCE MEASUREMENTS; ALGORITHM;
D O I
10.1117/12.788455
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Adaptive Optical systems (AO) with a very large number of degrees-of-freedom (DoF) need the proper development of reconstruction and control algorithms mingling both increased performance and reduced computational burden. The Hartmann wave-front sensor (HS-WFS) is broadly used in AO, featuring a set of lenslet arrays aligned onto a Cartesian grid. It works by averaging the slope of the wave-front in each sub-aperture. Throughout this paper the suitability of the so-called Hudgin, Fried and Southwell geometries to model the HS are analysed. Methods of exploiting data obtained from the telescope's annular aperture through the DFT are revisited. An alternative approach based upon the discrete Gerchberg iterative algorithm is employed. It inherently solves the extrapolation and circularization. The inverse problem is regularised to form the minimum mean-square error (MMSE) reconstructor in the spatial-frequency domain. Results obtained through Monte-Carlo simulations allow for a comprehensive comparison to the standard vector-matrix multiplies (VMM/VMMr) algorithm. Computational burden is kept O(DoF 1092(DoF)).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Adaptive and Real-time Optimal Control for Adaptive Optics Systems
    Doelman, Niek
    Fraanje, Rufus
    Houtzager, Ivo
    Verhaegen, Michel
    EUROPEAN JOURNAL OF CONTROL, 2009, 15 (3-4) : 480 - 488
  • [22] Adaptive optics real-time control using FPGA
    Rodriguez-Ramos, Luis F.
    Alonso, Angel
    Gago, Fernando
    Gigante, Jose V.
    Herrera, Guillermo
    Viera, Teodora
    2006 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2006, : 447 - 452
  • [23] A real-time simulation facility for astronomical adaptive optics
    Basden, Alastair
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 439 (03) : 2854 - 2862
  • [24] Linear phase retrieval for real-time adaptive optics
    Polo, A.
    Haber, A.
    Pereira, S. F.
    Verhaegen, M.
    Urbach, H. P.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2013, 8
  • [25] Real-time modal control implementation for adaptive optics
    Wirth, A
    Navetta, J
    Levine, BM
    OPTICAL TELESCOPES OF TODAY AND TOMORROW: FOLLOWING IN THE DIRECTION OF TYCHO BRAHE, 1997, 2871 : 871 - 877
  • [26] Adaptive optics system for real-time wavefront correction
    Rukosuev A.L.
    Kudryashov A.V.
    Lylova A.N.
    Samarkin V.V.
    Sheldakova Y.V.
    Atmospheric and Oceanic Optics, 2015, 28 (4) : 381 - 386
  • [27] GPUs for adaptive optics: simulations and real-time control
    Gratadour, Damien
    Sevin, Arnaud
    Brule, Julien
    Gendron, Eric
    Rousset, Gerard
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [28] Real-time modal control implementation for adaptive optics
    Wirth, A
    Navetta, J
    Looze, D
    Hippler, S
    Glindemann, A
    Hamilton, D
    APPLIED OPTICS, 1998, 37 (21) : 4586 - 4597
  • [29] Real-time modal control implementation for adaptive optics
    Wirth, Allan
    Navetta, Joseph
    Looze, Douglas
    Hippler, Stefan
    Glindemann, Andreas
    Hamilton, Donald
    Applied Optics, 1998, 37 (21): : 4586 - 4597