Rotational motion of a mathematical pendulum

被引:0
|
作者
Anakhaev, K. N. [1 ]
机构
[1] High Mt Geophys Inst, Nalchik 360030, Russia
关键词
Rotational Motion; Deviation Angle; DOKLADY Physics; Angular Acceleration; Mathematical Pendulum;
D O I
10.1134/S1028335815060014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
[No abstract available]
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [31] On stabilization of rotational modes of an inverted pendulum
    Shiriaev, AS
    Friesel, A
    Perram, J
    Pogromsky, A
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5047 - 5052
  • [32] STABILITY PROBLEMS FOR THE MATHEMATICAL PENDULUM
    Hatvani, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2008, 56 (01) : 71 - 82
  • [33] Rotational modes of a double conical pendulum
    Cross, Rod
    EUROPEAN JOURNAL OF PHYSICS, 2023, 44 (02)
  • [34] On rotational solutions for elliptically excited pendulum
    Belyakov, Anton O.
    PHYSICS LETTERS A, 2011, 375 (25) : 2524 - 2530
  • [35] Stability problems for the mathematical pendulum
    László Hatvani
    Periodica Mathematica Hungarica, 2008, 56 : 71 - 82
  • [36] Design of a self-tunable, variable-length pendulum for harvesting energy from rotational motion
    Hassan, Suzzan Abbas
    Osman, Tarek
    Khattab, Aly
    Arafa, Mustafa
    Abdelnaby, Mohammed Ali
    JOURNAL OF VIBROENGINEERING, 2020, 22 (06) : 1309 - 1325
  • [37] Stochastically analysis by using fixed point approach of pendulum with rolling wheel via translational and rotational motion
    Haider, Jamil Abbas
    Saeed, Farhan
    Lone, Showkat Ahmad
    Almutlak, Salmeh A.
    Elkotb, Mohamed Abdelghany
    MODERN PHYSICS LETTERS B, 2023, 37 (34):
  • [38] Mathematical Model of Longitudinal Motion of Viscoelastic Band in Rotational-Type Apparatus.
    Mitrofanov, V.P.
    Izvestia vyssih ucebnyh zavedenij. Masinostroenie, 1981, (02): : 10 - 13
  • [39] On the motion of a pendulum in a viscous medium
    Brindley, GW
    Emmerson, T
    PHILOSOPHICAL MAGAZINE, 1931, 11 (70): : 633 - 642
  • [40] PERTURBED MOTION OF A SIMPLE PENDULUM
    INOUE, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (04) : 1226 - 1237