From substitution to redefinition: A framework of machine learning-based science assessment

被引:38
|
作者
Zhai, Xiaoming [1 ]
C. Haudek, Kevin [2 ]
Shi, Lehong [1 ]
H. Nehm, Ross [3 ]
Urban-Lurain, Mark [2 ]
机构
[1] Univ Georgia, Mary Frances Early Coll Educ, Athens, GA 30602 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
[3] SUNY Stony Brook, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
machine learning; science assessment; technology; OF-THE-ART; AUTOMATED GUIDANCE; ONLINE; PERSPECTIVES; EXPLANATIONS; TECHNOLOGY; REVISION; FEEDBACK; THINKING; SYSTEMS;
D O I
10.1002/tea.21658
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This study develops a framework to conceptualize the use and evolution of machine learning (ML) in science assessment. We systematically reviewed 47 studies that applied ML in science assessment and classified them into five categories: (a) constructed response, (b) essay, (c) simulation, (d) educational game, and (e) inter-discipline. We compared the ML-based and conventional science assessments and extracted 12 critical characteristics to map three variables in a three-dimensional framework:construct,functionality, andautomaticity. The 12 characteristics used to construct a profile for ML-based science assessments for each article were further analyzed by a two-step cluster analysis. The clusters identified for each variable were summarized into four levels to illustrate the evolution of each. We further conducted cluster analysis to identify four classes of assessment across the three variables. Based on the analysis, we conclude that ML has transformed-but notyetredefined-conventional science assessment practice in terms of fundamental purpose, the nature of the science assessment, and the relevant assessment challenges. Along with the three-dimensional framework, we propose five anticipated trends for incorporating ML in science assessment practice for future studies: addressing developmental cognition, changing the process of educational decision making, personalized science learning, borrowing 'good' to advance 'good', and integrating knowledge from other disciplines into science assessment.
引用
收藏
页码:1430 / 1459
页数:30
相关论文
共 50 条
  • [21] A machine learning-based framework for analyzing car brand styling
    Li, Baojun
    Dong, Ying
    Wen, Zhijie
    Liu, Mingzeng
    Yang, Lei
    Song, Mingliang
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (07)
  • [22] Machine learning-based framework for saliency detection in distorted images
    Yuzhen Niu
    Lening Lin
    Yuzhong Chen
    Lingling Ke
    Multimedia Tools and Applications, 2017, 76 : 26329 - 26353
  • [23] A machine learning-based framework for predicting game server load
    Ozer, Cagdas
    Cevik, Taner
    Gurhanli, Ahmet
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (06) : 9527 - 9546
  • [24] Machine learning-based assessment of diabetes risk: Machine learning-based assessment of diabetes risk: Q. Sun et al.
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    Applied Intelligence, 2025, 55 (02)
  • [25] Machine Learning-based Optimal Framework for Internet of Things Networks
    Alsafasfeh, Moath
    Arida, Zaid A.
    Saraereh, Omar A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5355 - 5380
  • [26] A novel machine learning-based spatialized population synthesis framework
    Khachman, Mohamed
    Morency, Catherine
    Ciari, Francesco
    TRANSPORTATION, 2024,
  • [27] Machine Learning-Based Open Framework for Multiresolution Multiagent Simulation
    Pierzchala, Dariusz
    Czuba, Przemyslaw
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2019), 2020, 11995 : 216 - 228
  • [28] A machine learning-based analytical framework for employee turnover prediction
    Wang, Xinlei
    Zhi, Jianing
    JOURNAL OF MANAGEMENT ANALYTICS, 2021, 8 (03) : 351 - 370
  • [29] A machine learning-based framework for predicting game server load
    Çağdaş Özer
    Taner Çevik
    Ahmet Gürhanlı
    Multimedia Tools and Applications, 2021, 80 : 9527 - 9546
  • [30] An Adversarial Reinforcement Learning Framework for Robust Machine Learning-based Malware Detection
    Ebrahimi, Mohammadreza
    Li, Weifeng
    Chai, Yidong
    Pacheco, Jason
    Chen, Hsinchun
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 567 - 576