The topological quantum phase transitions in Lieb lattice driven by the Rashba SOC and exchange field

被引:3
|
作者
Wang, Rui [1 ]
Qiao, Qian [1 ]
Wang, Bin [2 ]
Ding, Xiu-Huan [3 ]
Zhang, Yi-Fu [4 ,5 ]
机构
[1] Zhejiang Ocean Univ, Dept Elect Informat Sci & Engn, Zhoushan 316022, Peoples R China
[2] Shenzhen Univ, Coll Phys Sci & Technol, Shenzhen 518060, Peoples R China
[3] Zhejiang Ocean Univ, Coll Math Phys & Informat Sci, Zhoushan 316022, Peoples R China
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 2016年 / 89卷 / 09期
基金
中国国家自然科学基金;
关键词
INSULATORS;
D O I
10.1140/epjb/e2016-70176-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieb lattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) and uniform exchange field. The Lieb lattice has a simple cubic symmetry, which is characterized by the single Dirac-cone per Brillouin zone and the middle flat band in the band structure. The intrinsic SOC is essentially needed to open the full energy gap in the bulk. The QSH effect could survive even in the presence of the exchange field. In terms of the first Chern number and the spin Chern number, we study the topological nature and the topological phase transition from the time-reversal symmetry broken QSH effect to the QAH effect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributions are obtained numerically, where the helical edge states and the chiral edge states reveal the non-trivial topological QSH and QAH properties, respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Casimir amplitudes in topological quantum phase transitions
    Griffith, M. A.
    Continentino, M. A.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [42] TOPOLOGICAL QUANTUM PHASE TRANSITIONS OF THE KITAEV MODEL
    Zhang, Guang-Ming
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 532 - 532
  • [43] Topological phase transitions in glassy quantum matter
    Sahlberg, Isac
    Weststrom, Alex
    Poyhonen, Kim
    Ojanen, Teemu
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [44] TOPOLOGICAL QUANTUM NUMBERS AND PHASE TRANSITIONS IN MATTER
    Thouless, David
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 298 - 298
  • [45] Dynamical topological quantum phase transitions at criticality
    Sadrzadeh, M.
    Jafari, R.
    Langari, A.
    PHYSICAL REVIEW B, 2021, 103 (14)
  • [46] Topological quantum phase transitions in superconductivity on lattices
    Hatsugai, Y
    Ryu, S
    PHYSICAL REVIEW B, 2002, 65 (21):
  • [47] Quasiparticles as detector of topological quantum phase transitions
    Manna, Sourav
    Srivatsa, N. S.
    Wildeboer, Julia
    Nielsen, Anne E. B.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [48] Continuous and discontinuous topological quantum phase transitions
    Roy, Bitan
    Goswami, Pallab
    Sau, Jay D.
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [49] Quantum topological phase transitions in skyrmion crystals
    Maeland, Kristian
    Sudbo, Asle
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [50] Fidelity analysis of topological quantum phase transitions
    Abasto, Damian F.
    Hamma, Alioscia
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2008, 78 (01):