Low-Complexity Video Quality Assessment Based on Spatio-Temporal Structure

被引:1
|
作者
Lu, Yaqi [1 ]
Yu, Mei [1 ]
Jiang, Gangyi [1 ]
机构
[1] Ningbo Univ, Ningbo 315211, Peoples R China
关键词
Video quality; Low-complexity; Spatio-temporal structure;
D O I
10.1007/978-3-030-30275-7_31
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-complexity is as important as prediction accuracy for video quality assessment (VQA) metrics to be practically deployable. In this paper, we develop an effective and efficient full-reference VQA algorithm, called Spatiotemporal Structural-based Video Quality Metric (SSVQM). To be more specific, spatio-temporal structural information is sensitive to both spatial distortions and temporal distortions. We calculate spatio-temporal structure based local quality according to spatio-temporal gradient characteristics and chrominance information. Then, these local quality scores are integrated to yield an overall video quality via a spatio-temporal pooling strategy simulating three most important global temporal effects of the human visual system, i.e. the smooth effect, the asymmetric tracking effect. Experiments on VQA databases LIVE and CSIQ demonstrate that our SSVQM achieves highly competitive prediction accuracy and delivers very low computational complexity.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 50 条
  • [31] STAN: Spatio-Temporal Alignment Network for No-Reference Video Quality Assessment
    Yang, Zhengyi
    Dang, Yuanjie
    Xiang, Jianjun
    Chen, Peng
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 160 - 171
  • [32] The network behind spatio-temporal patterns: building low-complexity retinal models in CNN based on morphology, pharmacology and physiology
    Rekeczky, C
    Roska, B
    Nemeth, E
    Werblin, FS
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2001, 29 (02) : 197 - 239
  • [33] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [34] Spatio-temporal transform based video hashing
    Coskun, Baris
    Sankur, Bulent
    Memon, Nasir
    IEEE TRANSACTIONS ON MULTIMEDIA, 2006, 8 (06) : 1190 - 1208
  • [35] No-reference video quality assessment method based on spatio-temporal features using the ELM algorithm
    da Silva, Wyllian Bezerra
    Mikowski, Alexandre
    Casali, Rafael Machado
    IET IMAGE PROCESSING, 2020, 14 (07) : 1316 - 1326
  • [36] A LOW-COMPLEXITY 3D SPATIO-TEMPORAL FIR FILTER FOR ENHANCING LINEAR TRAJECTORY SIGNALS
    Edussooriya, Chamira U. S.
    Bruton, Len T.
    Agathoklis, Panajotis
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [37] Low Complexity Spatio-Temporal Key Frame Encoding for Wyner-Ziv Video Coding
    Esmaili, Ghazaleh
    Cosman, Pamela
    DCC 2009: 2009 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 382 - 390
  • [38] Saliency-Aware Spatio-Temporal Artifact Detection for Compressed Video Quality Assessment
    Lin, Liqun
    Zheng, Yang
    Chen, Weiling
    Lan, Chengdong
    Zhao, Tiesong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 693 - 697
  • [39] No-Reference Quality Evaluation of Stereoscopic Video Based on Spatio-Temporal Texture
    Yang, Jiachen
    Zhao, Yang
    Jiang, Bin
    Lu, Wen
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (10) : 2635 - 2644
  • [40] Spatio-temporal Sampling for Video
    Shankar, Mohan
    Pitsiauis, Nikos P.
    Brady, David
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA V, 2008, 7076