Miniature thermal emission spectrometer for the Mars Exploration Rover

被引:0
|
作者
Peralta, RJ [1 ]
Silverman, S [1 ]
Bates, D [1 ]
Christensen, P [1 ]
Mehall, G [1 ]
Tourville, T [1 ]
Keehn, R [1 ]
Cannon, G [1 ]
机构
[1] Raytheon Santa Barbara Remote Sensing, Goleta, CA 93117 USA
关键词
miniaturization; thermal emissions; Fourier transform spectrometer; FTS; Mars Rover; Mars sample return; mineralogy; remote sensing;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes the dual-mission Mars 2003 Miniature Thermal Emission Spectrometer (Mini-TES) being built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman, et al, 1999) for the Mars 2001 Lander. Mini-TES is a single detector Fourier Transform Spectrometer (FTS), covering the spectral range 5-29 microns (gm) at 10 cm(-1) spectral resolution. Scheduled for launch in 2003, one Mini-TES instrument will fly to Mars aboard each of the two missions of NASA's Mars Exploration Rover Project (MER). Mini-TES is designed to provide a key minerological remote sensing component of the MER mission, which includes several other science instruments. Originally intended for the Athena Precursor Experiment (APEX) slated for a 2001 launch, the first Mini-TES unit was required to meet a two-year development schedule with proven, flight-tested instrumentation. Therefore, SBRS designed Mini-TES based on proven heritage from the successful Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), which was launched in 1996 and successfully completed its intended mission of one Martian year (two earth years) with over 100 million spectra collected to date, and counting. Mini-TES occupies only 15% of the volume and is 83% lighter than MGS TES, yet nearly all the design and technology elements of Mini-TES are direct descendants of proven flight components from MGS TES. Relevance of the Mini-TES to MER science, overall design, performance, assembly and test flow as well as details of the hardware fabricated at SBRS, are discussed.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 50 条
  • [21] Choosing Mars time: Analysis of the Mars Exploration Rover experience
    Bass, Deborah S.
    Wales, Roxana C.
    Shalin, Valerie L.
    2005 IEEE Aerospace Conference, Vols 1-4, 2005, : 4174 - 4185
  • [22] Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission
    Di, Kaichang
    Xu, Fengliang
    Wang, Jue
    Agarwal, Sanchit
    Brodyagina, Evgenia
    Li, Rongxing
    Matthies, Larry
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (02) : 181 - 201
  • [23] The Experience of Presence in the Mars Exploration Rover Mission
    Chiappe, Dan
    Vervaeke, John
    PRESENCE-VIRTUAL AND AUGMENTED REALITY, 2018, 27 (04): : 400 - 409
  • [24] Exploration of Victoria Crater by the Mars Rover Opportunity
    Squyres, S. W.
    Knoll, A. H.
    Arvidson, R. E.
    Ashley, J. W.
    Bell, J. F., III
    Calvin, W. M.
    Christensen, P. R.
    Clark, B. C.
    Cohen, B. A.
    de Souza, P. A., Jr.
    Edgar, L.
    Farrand, W. H.
    Fleischer, I.
    Gellert, R.
    Golombek, M. P.
    Grant, J.
    Grotzinger, J.
    Hayes, A.
    Herkenhoff, K. E.
    Johnson, J. R.
    Jolliff, B.
    Klingelhoefer, G.
    Knudson, A.
    Li, R.
    McCoy, T. J.
    McLennan, S. M.
    Ming, D. W.
    Mittlefehldt, D. W.
    Morris, R. V.
    Rice, J. W., Jr.
    Schroeder, C.
    Sullivan, R. J.
    Yen, A.
    Yingst, R. A.
    SCIENCE, 2009, 324 (5930) : 1058 - 1061
  • [25] The Mars Exploration Rover instrument positioning system
    Baumgartner, Eric T.
    Bonitz, Robert G.
    Melko, Joseph P.
    Shiraishi, Lori R.
    Leger, P. Chris
    2005 IEEE AEROSPACE CONFERENCE, VOLS 1-4, 2005, : 1 - 19
  • [26] Lithium batteries on 2003 Mars Exploration Rover
    Ratnakumar, BV
    Smart, MC
    Halpert, G
    Kindler, A
    Frank, H
    Di Stefano, S
    Ewell, R
    Surampudi, S
    SEVENTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, PROCEEDINGS, 2002, : 47 - 51
  • [27] Dynamic testing and simulation of the Mars Exploration Rover
    Lindemann, Randel
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 99 - 106
  • [28] The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars
    Rull, Fernando
    Maurice, Sylvestre
    Hutchinson, Ian
    Moral, Andoni
    Perez, Carlos
    Diaz, Carlos
    Colombo, Maria
    Belenguer, Tomas
    Lopez-Reyes, Guillermo
    Sansano, Antonio
    Forni, Olivier
    Parot, Yann
    Striebig, Nicolas
    Woodward, Simon
    Howe, Chris
    Tarcea, Nicolau
    Rodriguez, Pablo
    Seoane, Laura
    Santiago, Amaia
    Rodriguez-Prieto, Jose A.
    Medina, Jesus
    Gallego, Paloma
    Canchal, Rosario
    Santamaria, Pilar
    Ramos, Gonzalo
    Vago, Jorge L.
    ASTROBIOLOGY, 2017, 17 (6-7) : 627 - 654
  • [29] The experience of presence in the mars exploration rover mission
    Chiappe D.
    Vervaeke J.
    Presence: Teleoperators and Virtual Environments, 2021, 27 (04) : 400 - 409
  • [30] Global path planning for Mars rover exploration
    Tompkins, P
    Stentz, A
    Wettergreen, D
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 801 - 815