A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium

被引:5
|
作者
Ayi, Nathalie [1 ]
Herda, Maxime [2 ]
Hivert, Helene [3 ]
Tristani, Isabelle [4 ]
机构
[1] Univ Paris, Sorbonne Univ, CNRS, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Lille, INRIA, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[3] Univ Lyon, Ecole Cent Lyon, CNRS, UMR 5208,Inst Camille Jordan, F-69134 Ecully, France
[4] PSL Res Univ, CNRS, Ecole Normale Super, DMA, 45 Rue Ulm, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
ENTROPIES;
D O I
10.5802/crmath.46
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the large time behavior of linear kinetic equations with heavy-tailed local equilibria. Our main contribution concerns the kinetic Levy-Fokker-Planck equation, for which we adapt hypocoercivity techniques in order to show that solutions converge exponentially fast to the global equilibrium. Compared to the classical kinetic Fokker-Planck equation, the issues here concern the lack of symmetry of the non-local Levy-Fokker-Planck operator and the understanding of its regularization properties. As a complementary related result, we also treat the case of the heavy-tailed BGK equation.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [31] Heavy-tailed fractional Pearson diffusions
    Leonenko, N. N.
    Papic, I.
    Sikorskii, A.
    Suvak, N.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (11) : 3512 - 3535
  • [32] Scalar quantisation of heavy-tailed signals
    Tsakalides, P
    Reveliotis, P
    Nikias, CL
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2000, 147 (05): : 475 - 484
  • [33] On the emergence of heavy-tailed streamflow distributions
    Basso, S.
    Schirmer, M.
    Botter, G.
    [J]. ADVANCES IN WATER RESOURCES, 2015, 82 : 98 - 105
  • [34] Heavy-tailed Streaming Statistical Estimation
    Tsai, Che-Ping
    Prasad, Adarsh
    Balakrishnan, Sivaraman
    Ravikumar, Pradeep
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [35] HEAVY-TAILED BRANCHING PROCESS WITH IMMIGRATION
    Basrak, Bojan
    Kulik, Rafal
    Palmowski, Zbigniew
    [J]. STOCHASTIC MODELS, 2013, 29 (04) : 413 - 434
  • [36] Latest developments on heavy-tailed distributions
    Paolella, Marc
    Renault, Eric
    Samorodnitsky, Gennady
    Veredas, David
    [J]. JOURNAL OF ECONOMETRICS, 2013, 172 (02) : 183 - 185
  • [37] Appendix: A primer on heavy-tailed distributions
    Sigman, K
    [J]. QUEUEING SYSTEMS, 1999, 33 (1-3) : 261 - 275
  • [38] On Fuzzy Clustering for Heavy-Tailed Data
    Taheri, S. Mahmoud
    Mohammadpour, A.
    Atiyah, Israa
    [J]. 2017 5TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2017, : 202 - 206
  • [39] Detection of Dependent Heavy-Tailed Signals
    Subramanian, Arun
    Sundaresan, Ashok
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (11) : 2790 - 2803
  • [40] Graphical Models in Heavy-Tailed Markets
    Cardoso, Jose Vinicius de M.
    Ying, Jiaxi
    Palomar, Daniel P.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34