KINK DYNAMICS IN THE MEDIUM WITH A RANDOM FORCE AND DISSIPATION IN THE SINE-GORDON MODEL

被引:1
|
作者
Krasnobaeva, L. A. [1 ]
Shapovalov, A. V. [1 ]
机构
[1] Tomsk State Univ, Tomsk, Russia
关键词
D O I
10.1007/s11182-008-9040-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the formalism of the Fokker-Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine-Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker-Planck equation for the momentum distribution function coincides with the equation describing the Ornstein-Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker-Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 50 条
  • [31] DISCRETENESS EFFECTS ON THE DOUBLE SINE-GORDON KINK
    DINDA, PT
    WILLIS, CR
    PHYSICAL REVIEW E, 1995, 51 (05): : 4958 - 4977
  • [32] KINK ASYMPTOTICS OF THE PERTURBED SINE-GORDON EQUATION
    KISELEV, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (01) : 1106 - 1111
  • [33] KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION
    Segovia Chaves, Francis Armando
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01): : 6 - 11
  • [34] Dynamics of kink train solutions in deformed multiple Sine-Gordon models
    Peyravi, Marzieh
    Riazi, Nematollah
    Javidan, Kurosh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (01):
  • [35] Renormalization group method for kink dynamics in a perturbed sine-Gordon equation
    Wang, Li
    Tu, Tao
    Guo, Ping-Guo
    Guo, Guang-Can
    MODERN PHYSICS LETTERS B, 2014, 28 (09):
  • [36] Scattering of fermionic isodoublets on the sine-Gordon kink
    A. Yu. Loginov
    The European Physical Journal C, 82
  • [37] Perturbation theory for the kink of the sine-Gordon equation
    Tang, Y
    Wang, W
    PHYSICAL REVIEW E, 2000, 62 (06) : 8842 - 8845
  • [38] BROWNIAN-MOTION OF A SINE-GORDON KINK
    MARCHESONI, F
    WILLIS, CR
    PHYSICAL REVIEW A, 1987, 36 (09): : 4559 - 4562
  • [39] Overdamped sine-Gordon kink in a thermal bath
    Quintero, NR
    Sánchez, A
    Mertens, FG
    PHYSICAL REVIEW E, 1999, 60 (01): : 222 - 230
  • [40] Evolution of randomly perturbed sine-Gordon kink
    Abdullaev, FK
    Abdumalikov, AA
    PHYSICA D, 1998, 113 (2-4): : 115 - 122