The first-order theory of lexicographic path orderings is undecidable

被引:10
|
作者
Comon, H
Treinen, R
机构
[1] UNIV PARIS 11, CNRS, F-91405 ORSAY, FRANCE
[2] UNIV PARIS 11, LRI, F-91405 ORSAY, FRANCE
[3] GERMAN RES CTR ARTIFICIAL INTELLIGENCE DKFI, D-66123 SAARBRUCKEN, GERMANY
关键词
D O I
10.1016/S0304-3975(96)00049-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show, under some assumption on the signature, that the There Exists*For All* fragment of the theory of a lexicographic path ordering is undecidable, both in the partial and in the total precedence cases. Our result implies in particular that the simplification rule of ordered completion is undecidable.
引用
收藏
页码:67 / 87
页数:21
相关论文
共 50 条
  • [31] First-Order Logic and First-Order Functions
    Freire, Rodrigo A.
    LOGICA UNIVERSALIS, 2015, 9 (03) : 281 - 329
  • [32] First-order pedestrian traffic flow theory
    Daamen, W
    Hoogendoorn, SP
    Bovy, PHL
    TRAFFIC FLOW THEORY 2005, 2005, (1934): : 43 - 52
  • [33] On the multidimensional theory of the first-order phase transitions
    Fateev, MP
    PHYSICS OF THE SOLID STATE, 2002, 44 (12) : 2318 - 2322
  • [34] THEORY OF FIRST-ORDER MULTIDIMENSIONAL ELLIPTIC SYSTEMS
    SAAK, EM
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (01): : 43 - 46
  • [35] A finite first-order presentation of set theory
    Vaillant, S
    TYPES FOR PROOFS AND PROGRAMS, 2002, 2646 : 316 - 330
  • [36] First-order concatenation theory with bounded quantifiers
    Lars Kristiansen
    Juvenal Murwanashyaka
    Archive for Mathematical Logic, 2021, 60 : 77 - 104
  • [37] THEORY OF FIRST-ORDER RAMAN SCATTERING IN INSULATORS
    MILLS, DL
    BURSTEIN, E
    PHYSICAL REVIEW, 1969, 188 (03): : 1465 - &
  • [38] Basic first-order model theory in Mizar
    Caminati, Marco
    JOURNAL OF FORMALIZED REASONING, 2010, 3 (01): : 49 - 77
  • [39] FIRST-ORDER PERTUBATION THEORY IN LCAO APPROXIMATION
    VLADIMIR.T
    JOURNAL OF PHYSICAL CHEMISTRY, 1970, 74 (12): : 2415 - &
  • [40] First-order Hamiltonian field theory and mechanics
    Schoeberl, Markus
    Schlacher, Kurt
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2011, 17 (01) : 105 - 121