A versatile quantum walk resonator with bright classical light

被引:27
|
作者
Sephton, Bereneice [1 ,2 ]
Dudley, Angela [1 ,2 ]
Ruffato, Gianluca [3 ]
Romanato, Filippo [3 ,4 ]
Marrucci, Lorenzo [5 ]
Padgett, Miles [6 ]
Goyal, Sandeep [7 ]
Roux, Filippus [1 ,8 ]
Konrad, Thomas [9 ]
Forbes, Andrew [1 ]
机构
[1] Univ Witwatersrand, Sch Phys, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] CSIR, Natl Laser Ctr, POB 395, Pretoria, South Africa
[3] Univ Padua, Dept Phys & Astron G Galilei, Padua, Italy
[4] CNR, INFM TASC IOM Natl Lab, Trieste, Italy
[5] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Fis, Naples, Italy
[6] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland
[7] Indian Inst Sci Educ & Res, Mohali, Punjab, India
[8] Natl Metrol Inst South Africa, Pretoria, South Africa
[9] Univ KwaZulu Natal, Sch Chem & Phys, Durban, South Africa
来源
PLOS ONE | 2019年 / 14卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1371/journal.pone.0214891
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a Quantum Walk (QW) the "walker" follows all possible paths at once through the principle of quantum superposition, differentiating itself from classical random walks where one random path is taken at a time. This facilitates the searching of problem solution spaces faster than with classical random walks, and holds promise for advances in dynamical quantum simulation, biological process modelling and quantum computation. Here we employ a versatile and scalable resonator configuration to realise quantum walks with bright classical light. We experimentally demonstrate the versatility of our approach by implementing a variety of QWs, all with the same experimental platform, while the use of a resonator allows for an arbitrary number of steps without scaling the number of optics. This paves the way for future QW implementations with spatial modes of light in free-space that are both versatile and scalable.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] QUANTUM MEMORY FOR LIGHT WITH A QUANTUM DOT SYSTEM COUPLED TO A NANOMECHANICAL RESONATOR
    Li, Jin-Jin
    Zhu, Ka-Di
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (5-6) : 456 - 465
  • [42] Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics
    Wrzosek, Piotr
    Wohlfeld, Krzysztof
    Hofmann, Damian
    Sowinski, Tomasz
    Sentef, Michael A.
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [43] Investigations of Coherence in Perovskite Quantum Dots with Classical and Quantum Light
    Goodson, Theodore, III
    Ricci, Federica
    Mandal, Haraprasad
    Wajahath, Muaaz
    Burdick, Ryan K.
    Villabona-Monsalve, Juan P.
    Hussain, Saber
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (07): : 3579 - 3593
  • [44] Quantum and classical control of single photon states via a mechanical resonator
    Basiri-Esfahani, Sahar
    Myers, Casey R.
    Combes, Joshua
    Milburn, G. J.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [45] Implementation of quantum permutation algorithm with classical light
    Zhang, Shihao
    Li, Pengyun
    Wang, Bo
    Zeng, Qiang
    Zhang, Xiangdong
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (01):
  • [46] Quantum computation with classical light: The Deutsch Algorithm
    Perez-Garcia, Benjamin
    Francis, Jason
    McLaren, Melanie
    Hernandez-Aranda, Raul I.
    Forbes, Andrew
    Konrad, Thomas
    PHYSICS LETTERS A, 2015, 379 (28-29) : 1675 - 1680
  • [47] Intensity interferometry for holography with quantum and classical light
    Thekkadath, Guillaume
    England, Duncan
    Bouchard, Frederic
    Zhang, Yingwen
    Kim, Myungshik
    Sussman, Benjamin
    SCIENCE ADVANCES, 2023, 9 (27)
  • [48] Quantum coherent versus classical coherent light
    Dragoman, D
    Dragoman, M
    OPTICAL AND QUANTUM ELECTRONICS, 2001, 33 (03) : 239 - 252
  • [49] Spin light of a neutron in classical and quantum theories
    Bordovitsyn, V. A.
    Konstantinova, A.
    IX INTERNATIONAL SYMPOSIUM ON RADIATION FROM RELATIVISTIC ELECTRONS IN PERIODIC STRUCTURES (RREPS-2011), 2012, 357
  • [50] Quantum coherent versus classical coherent light
    D. Dragoman
    M. Dragoman
    Optical and Quantum Electronics, 2001, 33 : 239 - 252