A versatile quantum walk resonator with bright classical light

被引:27
|
作者
Sephton, Bereneice [1 ,2 ]
Dudley, Angela [1 ,2 ]
Ruffato, Gianluca [3 ]
Romanato, Filippo [3 ,4 ]
Marrucci, Lorenzo [5 ]
Padgett, Miles [6 ]
Goyal, Sandeep [7 ]
Roux, Filippus [1 ,8 ]
Konrad, Thomas [9 ]
Forbes, Andrew [1 ]
机构
[1] Univ Witwatersrand, Sch Phys, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] CSIR, Natl Laser Ctr, POB 395, Pretoria, South Africa
[3] Univ Padua, Dept Phys & Astron G Galilei, Padua, Italy
[4] CNR, INFM TASC IOM Natl Lab, Trieste, Italy
[5] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Fis, Naples, Italy
[6] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland
[7] Indian Inst Sci Educ & Res, Mohali, Punjab, India
[8] Natl Metrol Inst South Africa, Pretoria, South Africa
[9] Univ KwaZulu Natal, Sch Chem & Phys, Durban, South Africa
来源
PLOS ONE | 2019年 / 14卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1371/journal.pone.0214891
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a Quantum Walk (QW) the "walker" follows all possible paths at once through the principle of quantum superposition, differentiating itself from classical random walks where one random path is taken at a time. This facilitates the searching of problem solution spaces faster than with classical random walks, and holds promise for advances in dynamical quantum simulation, biological process modelling and quantum computation. Here we employ a versatile and scalable resonator configuration to realise quantum walks with bright classical light. We experimentally demonstrate the versatility of our approach by implementing a variety of QWs, all with the same experimental platform, while the use of a resonator allows for an arbitrary number of steps without scaling the number of optics. This paves the way for future QW implementations with spatial modes of light in free-space that are both versatile and scalable.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Classical Emulation of Bright Quantum States
    Vlasenko, Svetlana
    Mikhalychev, Alexander
    Pakniyat, Samaneh
    Hanson, George
    Boag, Amir
    Slepyan, Gregory
    Mogilevtsev, Dmitri
    ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (08)
  • [2] Simulating a quantum walk with classical optics
    Francisco, D.
    Iemmi, C.
    Paz, J. P.
    Ledesma, S.
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [3] Bandit Algorithm Driven by a Classical Random Walk and a Quantum Walk
    Yamagami, Tomoki
    Segawa, Etsuo
    Mihana, Takatomo
    Rohm, Andre
    Horisaki, Ryoichi
    Naruse, Makoto
    ENTROPY, 2023, 25 (06)
  • [4] A quantum walk in phase space with resonator-assisted double quantum dots
    Bian, Zhi-Hao
    Qin, Hao
    Zhan, Xiang
    Li, Jian
    Xue, Peng
    CHINESE PHYSICS B, 2016, 25 (02)
  • [5] A quantum walk in phase space with resonator-assisted double quantum dots
    边志浩
    秦豪
    詹翔
    李剑
    薛鹏
    Chinese Physics B, 2016, (02) : 97 - 101
  • [6] The Fibonacci quantum walk and its classical trace map
    Romanelli, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (18) : 3985 - 3990
  • [7] Quantum to classical walk transitions tuned by spontaneous emissions
    Clark, J. H.
    Groiseau, C.
    Shaw, Z. N.
    Dadras, S.
    Binegar, C.
    Wimberger, S.
    Summy, G. S.
    Liu, Y.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [8] Quantum lithography with classical light
    Ge, Wenchao
    Hemmer, P. R.
    Zubairy, M. Suhail
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [9] Quantum lithography with classical light
    Hemmer, PR
    Muthukrishnan, A
    Scully, MO
    Zubairy, MS
    PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [10] Quantum mechanics and classical light
    Konrad, Thomas
    Forbes, Andrew
    CONTEMPORARY PHYSICS, 2019, 60 (01) : 1 - 22