Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy

被引:47
|
作者
Kim, Min-Ki [1 ]
Kim, Myoung-Soo [1 ]
Jo, Sung-Eun [1 ]
Kim, Yong-Jun [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
energy harvesting; hybrid nanogenerator; friction heat; triboelectric; thermoelectric; GENERATOR; CELL;
D O I
10.1088/0964-1726/25/12/125007
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The triboelectric nanogenerator, an energy harvesting device that converts external kinetic energy into electrical energy through using a nano-structured triboelectric material, is well known as an energy harvester with a simple structure and high output voltage. However, triboelectric nanogenerators also inevitably generate heat resulting from the friction that arises from their inherent sliding motions. In this paper, we present a hybrid nanogenerator, which integrates a triboelectric generator and a thermoelectric generator (TEG) for harvesting both the kinetic friction energy and the heat energy that would otherwise be wasted. The triboelectric part consists of a polytetrafluoroethylene (PTFE) film with nano-structures and a movable aluminum panel. The thermoelectric part is attached to the bottom of the PTFE film by an adhesive phase change material layer. We confirmed that the hybrid nanogenerator can generate an output power that is higher than that generated by a single triboelectric nanogenerator or a TEG. The hybrid nanogenerator was capable of producing a power density of 14.98 mW cm(-2). The output power, produced from a sliding motion of 12 cm s(-1), was capable of instantaneously lighting up 100 commercial LED bulbs. The hybrid nanogenerator can charge a 47 mu F capacitor at a charging rate of 7.0 mV s(-1), which is 13.3% faster than a single triboelectric generator. Furthermore, the efficiency of the device was significantly improved by the addition of a heat source. This hybrid energy harvester does not require any difficult fabrication steps, relative to existing triboelectric nanogenerators. The present study addresses a method for increasing the efficiency while solving other problems associated with triboelectric nanogenerators.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations
    Simoes, Agnes Nascimento
    Carvalho, Danilo Jose
    Morita, Eugenio de Souza
    Moretti, Haroldo Luiz
    Vendrameto, Helen Velozo
    Fu, Li
    Torres, Floriano
    de Souza, Andre Nunes
    Bizzo, Waldir Antonio
    Mazon, Talita
    MACHINES, 2022, 10 (03)
  • [22] Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
    Cheng, Jiahui
    Zhang, Xiaolong
    Jia, Tingwei
    Wu, Qian
    Dong, Yang
    Wang, Daoai
    NANO ENERGY, 2022, 102
  • [23] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [24] A generalized model for a triboelectric nanogenerator energy harvesting system
    Sun, Bobo
    Guo, Xin
    Zhang, Yuyang
    Wang, Zhong Lin
    Shao, Jiajia
    NANO ENERGY, 2024, 126
  • [25] Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator
    Wen, Zhen
    Guo, Hengyu
    Zi, Yunlong
    Yeh, Min-Hsin
    Wang, Xin
    Deng, Jianan
    Wang, Jie
    Li, Shengming
    Hu, Chenguo
    Zhu, Liping
    Wang, Zhong Lin
    ACS Nano, 2016, 10 (07) : 6526 - 6534
  • [26] Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting
    Hao, Congcong
    He, Jian
    Zhai, Cong
    Jia, Wei
    Song, Linlin
    Cho, Jundong
    Chou, Xiujian
    Xue, Chenyang
    NANO ENERGY, 2019, 58 (147-157) : 147 - 157
  • [27] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [28] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [29] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):
  • [30] A triboelectric-piezoelectric hybrid nanogenerator for rotational energy harvesting based on bistable cantilever beam
    Bai, Quan
    Zhou, Teng
    Gan, Chongzao
    Wang, Qiong
    Zheng, Xuejun
    Wei, Ke-Xiang
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300