Improved chemical shift prediction by Rosetta conformational sampling

被引:4
|
作者
Tian, Ye [1 ,2 ]
Opella, Stanley J. [2 ]
Marassi, Francesca M. [1 ]
机构
[1] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Chemical shift; Prediction; Rosetta; Ensemble averaging; Structure; Membrane protein; Solid-state NMR; Conformational ensemble; PROTEIN-STRUCTURE DETERMINATION; NMR STRUCTURE DETERMINATION; MERCURY DETOXIFICATION SYSTEM; MEMBRANE-PROTEIN; SECONDARY STRUCTURE; C-13; NMR; STRUCTURE GENERATION; SEQUENCE HOMOLOGY; C-ALPHA; C-13(ALPHA);
D O I
10.1007/s10858-012-9677-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chemical shift frequencies represent a time-average of all the conformational states populated by a protein. Thus, chemical shift prediction programs based on sequence and database analysis yield higher accuracy for rigid rather than flexible protein segments. Here we show that the prediction accuracy can be significantly improved by averaging over an ensemble of structures, predicted solely from amino acid sequence with the Rosetta program. This approach to chemical shift and structure prediction has the potential to be useful for guiding resonance assignments, especially in solid-state NMR structural studies of membrane proteins in proteoliposomes.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 50 条
  • [31] EFFECT OF SUBSTITUENTS ON CHEMICAL SHIFT OF BENZYLIC PROTONS - EVIDENCE FOR A CONFORMATIONAL DEPENDENCE
    FRASER, RR
    GURUDATA
    REYESZAM.C
    SWINGLE, RB
    CANADIAN JOURNAL OF CHEMISTRY, 1968, 46 (09): : 1595 - &
  • [32] FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds
    Watkins, Andrew Martin
    Rangan, Ramya
    Das, Rhiju
    STRUCTURE, 2020, 28 (08) : 963 - +
  • [33] Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta
    Ovchinnikov, Sergey
    Kim, David E.
    Wang, Ray Yu-Ruei
    Liu, Yuan
    DiMaio, Frank
    Baker, David
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2016, 84 : 67 - 75
  • [34] Neural Message Passing for NMR Chemical Shift Prediction
    Kwon, Youngchun
    Lee, Dongseon
    Choi, Youn-Suk
    Kang, Myeonginn
    Kang, Seokho
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (04) : 2024 - 2030
  • [35] Structural Analysis of Glycans by NMR Chemical Shift Prediction
    Lundborg, Magnus
    Widmalm, Goran
    ANALYTICAL CHEMISTRY, 2011, 83 (05) : 1514 - 1517
  • [36] Characterization of a Novel Bispecific Antibody With Improved Conformational and Chemical Stability
    Manikwar, Prakash
    Mulagapati, Sri Hari Raju
    Kasturirangan, Srinath
    Moez, Khashayar
    Rainey, Godfrey Jonah
    Lobo, Brian
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 109 (01) : 220 - 232
  • [37] 27Al NMR chemical shifts in zeolite MFI via machine learning acceleration of structure sampling and shift prediction
    Willimetz, Daniel
    Erlebach, Andreas
    Heard, Christopher J.
    Grajciar, Lukas
    DIGITAL DISCOVERY, 2025, 4 (01): : 275 - 288
  • [38] Protein structure prediction using rosetta
    Rohl, CA
    Strauss, CEM
    Misura, KMS
    Baker, D
    NUMERICAL COMPUTER METHODS, PT D, 2004, 383 : 66 - +
  • [39] Prediction of the conformational property for polymers using quantum chemical descriptors
    Yu, Xinliang
    Yi, Bing
    Xie, Zhimin
    Wang, Xueye
    Liu, Fang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 87 (02) : 247 - 251
  • [40] Prediction of Conformational Epitopes by Geometrical Affinity and Chemical Propensity Approaches
    Tang, Cheng-Ying
    Wu, Wei-Kuo
    Hsu, Yu-Ping
    Wang, Hsin-Wei
    Pai, Tun-Wen
    Chang, Hao-Teng
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2009, 11 : 189 - +