A proof of Lee's conjecture on the sum of absolute values of matrices

被引:1
|
作者
Lin, Jianfu [1 ]
Zhang, Yun [1 ]
机构
[1] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
基金
美国国家科学基金会;
关键词
Absolute value; Frobenius norm; Angles;
D O I
10.1016/j.jmaa.2022.126542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let broken vertical bar broken vertical bar center dot broken vertical bar broken vertical bar(F) denote the Frobenius norm of matrices and let |G| denote the absolute value of a square complex matrix G. We prove the following conjecture posed by Eun-Young Lee in 2010: broken vertical bar broken vertical bar A + B broken vertical bar broken vertical bar(F) <= root 1 + root 2/ 2 broken vertical bar broken vertical bar |A| + |B| broken vertical bar broken vertical bar(F) for any square complex matrices Aand Bof the same order, where the constant root 1+root 2/2 is best possible. (c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Proof of Serban's conjecture
    Bergere, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (01) : 30 - 46
  • [32] A proof of Kirillov's conjecture
    Baruch, EM
    ANNALS OF MATHEMATICS, 2003, 158 (01) : 207 - 252
  • [33] A proof of Subbarao's conjecture
    Radu, Cristian-Silviu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 : 161 - 175
  • [34] PROOF OF WANG'S CONJECTURE
    杨义先
    Science Bulletin, 1990, (04) : 350 - 352
  • [35] A proof of Onsager's conjecture
    Isett, Philip
    ANNALS OF MATHEMATICS, 2018, 188 (03) : 871 - 963
  • [36] A proof of snevily’s conjecture
    Bodan Arsovski
    Israel Journal of Mathematics, 2011, 182 : 505 - 508
  • [37] On the Proof of Lin's Conjecture
    Hu, Honggang
    Shao, Shuai
    Gong, Guang
    Helleseth, Tor
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1822 - 1826
  • [38] A proof of Wright's conjecture
    van den Berg, Jan Bouwe
    Jaquette, Jonathan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7412 - 7462
  • [39] A proof of Ringel’s conjecture
    R. Montgomery
    A. Pokrovskiy
    B. Sudakov
    Geometric and Functional Analysis, 2021, 31 : 663 - 720
  • [40] A proof of Higgins's conjecture
    Braun, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 207 - 212