A practical comparison of two K-Means clustering algorithms

被引:15
|
作者
Wilkin, Gregory A. [1 ]
Huang, Xiuzhen [1 ]
机构
[1] Arkansas State Univ, Dept Comp Sci, State Univ, AR 72467 USA
关键词
Cluster Algorithm; Cluster Center; Cluster Representative; Close Center; Proximity Relationship;
D O I
10.1186/1471-2105-9-S6-S19
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Data clustering is a powerful technique for identifying data with similar characteristics, such as genes with similar expression patterns. However, not all implementations of clustering algorithms yield the same performance or the same clusters. Results: In this paper, we study two implementations of a general method for data clustering: k-means clustering. Our experimentation compares the running times and distance efficiency of Lloyd's K-means Clustering and the Progressive Greedy K-means Clustering. Conclusion: Based on our implementation, not just in processing time, but also in terms of mean squared-difference (MSD), Lloyd's K-means Clustering algorithm is more efficient. This analysis was performed using both a gene expression level sample and on randomly-generated datasets in three-dimensional space. However, other circumstances may dictate a different choice in some situations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    [J]. Behavior Research Methods, 2013, 45 : 1011 - 1023
  • [42] K-Means Clustering Explained
    Emerson, Robert Wall
    [J]. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2024, 118 (01) : 65 - 66
  • [43] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [44] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    [J]. BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [45] Practical multi-party private collaborative k-means clustering
    Zhang, En
    Li, Huimin
    Huang, Yuchen
    Hong, Shuangxi
    Zhao, Le
    Ji, Congmin
    [J]. NEUROCOMPUTING, 2022, 467 : 256 - 265
  • [46] Online k-means Clustering
    Cohen-Addad, Vincent
    Guedj, Benjamin
    Kanade, Varun
    Rom, Guy
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [47] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [48] K-means clustering on CGRA
    Lopes, Joao D.
    de Sousa, Jose T.
    Neto, Horacio
    Vestias, Mario
    [J]. 2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [49] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    [J]. PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [50] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163