Linear preservers of weak majorization on l1(I)+, when I is an infinite set

被引:15
|
作者
Ljubenovic, Martin [1 ]
Djordjevic, Dragan S. [2 ]
机构
[1] Univ Nis, Fac Mech Engn, Dept Math, Aleksandra Medvedeva 14, Nish 18000, Serbia
[2] Univ Nis, Fac Sci & Math, Dept Math, POB 224, Nish 18000, Serbia
关键词
Weak majorization; Linear preserver; Doubly substochastic operator; Partial permutation; SCHUR-HORN THEOREM; OPERATORS;
D O I
10.1016/j.laa.2016.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The necessary and sufficient conditions that a bounded linear map on the Banach space l(1)(I), may be considered as a linear preserver of weak majorization on l(1)(I)(+), where I is an arbitrary infinite set, are given. Also, we prove that the set of all linear preservers of weak majorization is closed under the norm topology. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 198
页数:22
相关论文
共 50 条
  • [21] A coordinate majorization descent algorithm for l1 penalized learning
    Yang, Yi
    Zou, Hui
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (01) : 84 - 95
  • [22] ALGORITHMS FOR BEST L1 AND LINFINITY LINEAR APPROXIMATIONS ON A DISCRETE SET
    BARRODALE, I
    YOUNG, A
    NUMERISCHE MATHEMATIK, 1966, 8 (03) : 295 - +
  • [23] A NUMERICAL APPROACH TO INFINITE-DIMENSIONAL LINEAR PROGRAMMING IN L1 SPACES
    Ito, Satoshi
    Wu, Soon-Yi
    Shiu, Ting-Jang
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (01) : 15 - 28
  • [24] THE CANONICAL SEMINORM ON WEAK L1
    CWIKEL, M
    FEFFERMAN, C
    STUDIA MATHEMATICA, 1984, 78 (03) : 275 - 278
  • [25] ON WEAK COMPACTNESS IN L1 SPACES
    Fabian, M.
    Montesinos, V.
    Zizler, V.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (06) : 1885 - 1893
  • [26] MAXIMAL SEMINORMS ON WEAK L1
    CWIKEL, M
    FEFFERMAN, C
    STUDIA MATHEMATICA, 1980, 69 (02) : 149 - 154
  • [27] On the weak property of Lebesgue of L1(Ω,Σ,μ)
    Wang, CH
    Wan, K
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (02) : 697 - 703
  • [28] BANACH SUBLATTICES OF WEAK L1
    PECK, NT
    TALAGRAND, M
    ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (03) : 257 - 271
  • [29] A DECOMPOSITION PROPERTY OF WEAK L1
    PECK, NT
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 : 109 - 114
  • [30] Semigroups Generated by Ordinary Differential Operators in L1(I)*
    Antonio Attalienti
    Michele Campiti
    Positivity, 2004, 8 : 11 - 30