The necessary and sufficient conditions that a bounded linear map on the Banach space l(1)(I), may be considered as a linear preserver of weak majorization on l(1)(I)(+), where I is an arbitrary infinite set, are given. Also, we prove that the set of all linear preservers of weak majorization is closed under the norm topology. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Inst Stat Math, Dept Math Anal & Stat Inference, Res Org Informat & Syst, Tokyo 1068569, JapanInst Stat Math, Dept Math Anal & Stat Inference, Res Org Informat & Syst, Tokyo 1068569, Japan
Ito, Satoshi
Wu, Soon-Yi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
Natl Ctr Theoret Sci, Tainan 70101, TaiwanInst Stat Math, Dept Math Anal & Stat Inference, Res Org Informat & Syst, Tokyo 1068569, Japan
Wu, Soon-Yi
Shiu, Ting-Jang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 70101, TaiwanInst Stat Math, Dept Math Anal & Stat Inference, Res Org Informat & Syst, Tokyo 1068569, Japan
Shiu, Ting-Jang
Teo, Kok Lay
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ Technol, Dept Math & Stat, Perth, WA, AustraliaInst Stat Math, Dept Math Anal & Stat Inference, Res Org Informat & Syst, Tokyo 1068569, Japan