Linear preservers of weak majorization on l1(I)+, when I is an infinite set

被引:15
|
作者
Ljubenovic, Martin [1 ]
Djordjevic, Dragan S. [2 ]
机构
[1] Univ Nis, Fac Mech Engn, Dept Math, Aleksandra Medvedeva 14, Nish 18000, Serbia
[2] Univ Nis, Fac Sci & Math, Dept Math, POB 224, Nish 18000, Serbia
关键词
Weak majorization; Linear preserver; Doubly substochastic operator; Partial permutation; SCHUR-HORN THEOREM; OPERATORS;
D O I
10.1016/j.laa.2016.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The necessary and sufficient conditions that a bounded linear map on the Banach space l(1)(I), may be considered as a linear preserver of weak majorization on l(1)(I)(+), where I is an arbitrary infinite set, are given. Also, we prove that the set of all linear preservers of weak majorization is closed under the norm topology. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 198
页数:22
相关论文
共 50 条
  • [1] Linear preservers of DSS-weak majorization on discrete Lebesgue space , when I is an infinite set
    Ljubenovic, Martin Z.
    Rakic, Dragan S.
    Djordjevic, Dragan S.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2657 - 2673
  • [2] Linear preservers of weak majorization on lp(I)+, when p ∈ (1, ∞)
    Ljubenovic, Martin
    Djordjevic, Dragan S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 497 : 181 - 198
  • [3] BOUNDED LINEAR OPERATORS THAT PRESERVE THE WEAK SUPERMAJORIZATION ON l1(I)+, WHEN I IS AN INFINITE SET
    Ljubenovic, Martin
    Djordjevic, Dragan S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 407 - 427
  • [4] Linear preservers of majorization on lp (I)
    Bahrami, F.
    Eshkaftaki, A. Bayati
    Manjegani, S. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3177 - 3195
  • [5] SOME TOPOLOGICAL PROPERTIES OF THE SET OF LINEAR PRESERVERS OF MAJORIZATION
    Bahrami, F.
    Eshkaftaki, A. Bayati
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 655 - 663
  • [6] DSS-weak majorization and its linear preservers on lp spaces
    Eshkaftaki, A. Bayati
    Berenjegani, M. Heydari
    Bahrami, F.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 2076 - 2088
  • [7] Majorization on l∞ and on its closed linear subspace c, and their linear preservers
    Bahrami, E.
    Eshkaftaki, A. Bayati
    Manjegani, S. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2340 - 2358
  • [8] WEAK CLOSURE OF A CERTAIN SET IN L1
    RYFF, JV
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (01): : 69 - 70
  • [9] STRONG LINEAR PRESERVERS OF UT-TOEPLITZ WEAK MAJORIZATION ON R-n
    Jamshidi, Mina
    MATEMATICKI VESNIK, 2018, 70 (02): : 161 - 166