A Hopf Bifurcation in a Three-Component Reaction-Diffusion System with a Chemoattraction

被引:0
|
作者
Ham, YoonMee [1 ]
Lee, Sang-Gu [2 ]
Quoc Phong Vu [3 ,4 ]
机构
[1] Kyonggi Univ, Dept Math, Suwon 443760, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
[4] Vietnam Inst Adv Study Math, Hanoi, Vietnam
关键词
CHEMOTAXIS-GROWTH; WAVES;
D O I
10.1155/2013/830386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a three-component reaction-diffusion system with a chemoattraction. The purpose of this work is to analyze the chemotactic effects due to the gradient of the chemotactic sensitivity and the shape of the interface. Conditions for existence of stationary solutions and the Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model
    Guo, Gaihui
    Li, Bingfang
    Wei, Meihua
    Wu, Jianhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 265 - 277
  • [32] Stability and Hopf bifurcation of a delayed reaction-diffusion neural network
    Gan, Qintao
    Xu, Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (12) : 1450 - 1459
  • [33] INTERFACE OSCILLATIONS IN REACTION-DIFFUSION SYSTEMS ABOVE THE HOPF BIFURCATION
    McKay, Rebecca
    Kolokolnikov, Theodore
    Muir, Paul
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2523 - 2543
  • [34] Hopf bifurcation of a delayed reaction-diffusion model with advection term
    Ma, Li
    Wei, Dan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212 (212)
  • [35] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [36] Turing-Hopf bifurcation in a general Selkov-Schnakenberg reaction-diffusion system
    Li, Yanqiu
    Zhou, Yibo
    CHAOS SOLITONS & FRACTALS, 2023, 171
  • [37] Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion model
    Cherniha, R. M.
    Davydovych, V. V.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (02) : 280 - 300
  • [38] The formation of spreading front: the singular limit of three-component reaction-diffusion models
    Izuhara, Hirofumi
    Monobe, Harunori
    Wu, Chang-Hong
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (05)
  • [39] Hopf bifurcation in a reaction-diffusion model with Degn-Harrison reaction scheme
    Dong, Yaying
    Li, Shanbing
    Zhang, Shunli
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 : 284 - 297
  • [40] Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system
    Gurevich, Svetlana V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2027):