A Hopf Bifurcation in a Three-Component Reaction-Diffusion System with a Chemoattraction

被引:0
|
作者
Ham, YoonMee [1 ]
Lee, Sang-Gu [2 ]
Quoc Phong Vu [3 ,4 ]
机构
[1] Kyonggi Univ, Dept Math, Suwon 443760, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
[4] Vietnam Inst Adv Study Math, Hanoi, Vietnam
关键词
CHEMOTAXIS-GROWTH; WAVES;
D O I
10.1155/2013/830386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a three-component reaction-diffusion system with a chemoattraction. The purpose of this work is to analyze the chemotactic effects due to the gradient of the chemotactic sensitivity and the shape of the interface. Conditions for existence of stationary solutions and the Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Stability and Hopf bifurcation for a three-component reaction-diffusion population model with delay effect
    Ma, Zhan-Ping
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 5984 - 6007
  • [2] Fast reaction limit of a three-component reaction-diffusion system
    Murakawa, H.
    Ninomiya, H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 150 - 170
  • [3] Autowaves and solitons in a three-component reaction-diffusion system
    Nekorkin, VI
    Kazantsev, VB
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2421 - 2434
  • [4] Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system
    Yuan, Xiaohui
    Teramoto, Takashi
    Nishiura, Yasumasa
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [5] Breathing dissipative solitons in three-component reaction-diffusion system
    Gurevich, S. V.
    Amiranashvili, Sh.
    Purwins, H. -G.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [6] Butterfly Catastrophe for Fronts in a Three-Component Reaction-Diffusion System
    Chirilus-Bruckner, Martina
    Doelman, Arjen
    van Heijster, Peter
    Rademacher, Jens D. M.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (01) : 87 - 129
  • [7] Hopf bifurcation in a reaction-diffusion system with conservation of mass
    Sakamoto, Takashi Okuda
    NONLINEARITY, 2013, 26 (07) : 2027 - 2049
  • [8] Nonequilibrium potential and pattern formation in a three-component reaction-diffusion system
    Bouzat, S.
    Wio, H.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247 (4-5): : 297 - 302
  • [9] Nonequilibrium potential and pattern formation in a three-component reaction-diffusion system
    Bouzat, S
    Wio, HS
    PHYSICS LETTERS A, 1998, 247 (4-5) : 297 - 302
  • [10] Hopf Bifurcation and Hopf-Pitchfork Bifurcation in an Integro-Differential Reaction-Diffusion System
    Kobayashi, Shunsuke
    Sakamoto, Takashi Okuda
    TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (01) : 121 - 183