Interfacial zippering-up of coiled-coil protein filaments

被引:9
|
作者
De Santis, Emiliana [1 ]
Castelletto, Valeria [1 ]
Ryadnov, Maxim G. [1 ]
机构
[1] Natl Phys Lab, Teddington TW11 0LW, Middx, England
关键词
GCN4; LEUCINE-ZIPPER; RATIONAL DESIGN; FIBRILLOGENESIS; PEPTIDES; FIBERS; LENGTH;
D O I
10.1039/c5cp05938k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protein self-assembled materials find increasing use in medicine and nanotechnology. A challenge remains in our ability to tailor such materials at a given length scale. Here we report a de novo self-assembly topology which enables the engineering of filamentous protein nanostructures under morphological control. The rationale is exemplified by a ubiquitous self-assembly motif - an alpha-helical coiled-coil stagger. The stagger incorporates regularly spaced interfacial tryptophan residues, which allows it to zipper up into discrete filaments that bundle together without thickening by maturation. Using a combination of spectroscopy, microscopy, X-ray small-angle scattering and fibre diffraction methods we show that the precise positioning of tryptophan residues at the primary and secondary structure levels defines the extent of coiled-coil packing in resultant filaments. Applicable to other self-assembling systems, the rationale holds promise for the construction of advanced protein-based architectures and materials.
引用
收藏
页码:31055 / 31060
页数:6
相关论文
共 50 条
  • [31] Protein detection by Western blot via coiled-coil interactions
    Boucher, Cyril
    St-Laurent, Gilles
    Jolicoeur, Mario
    De Crescenzo, Gregory
    Durocher, Yves
    ANALYTICAL BIOCHEMISTRY, 2010, 399 (01) : 138 - 140
  • [32] A Statistical Mechanical Model for Coiled-Coil Protein Structure Prediction
    Jokar, Mojtaba
    Torabi, Korosh
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 193A - 193A
  • [33] Force Modulated Conductance of Artificial Coiled-Coil Protein Monolayers
    Atanassov, Alexander
    Hendler, Ziv
    Berkovich, Inbal
    Ashkenasy, Gonen
    Ashkenasy, Nurit
    BIOPOLYMERS, 2013, 100 (01) : 93 - 99
  • [34] CCFold: rapid and accurate prediction of coiled-coil structures and application to modelling intermediate filaments
    Guzenko, Dmytro
    Strelkov, Sergei V.
    BIOINFORMATICS, 2018, 34 (02) : 215 - 222
  • [35] Real-time observation of coiled-coil domains and subunit assembly in intermediate filaments
    Hess, JF
    Voss, JV
    FitzGerald, PG
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (38) : 35516 - 35522
  • [36] Computational Prediction of Coiled-Coil Protein Gelation Dynamics and Structure
    Britton, Dustin
    Christians, Luc F.
    Liu, Chengliang
    Legocki, Jakub
    Xiao, Yingxin
    Meleties, Michael
    Yang, Lin
    Cammer, Michael
    Jia, Sihan
    Zhang, Zihan
    Mahmoudinobar, Farbod
    Kowalski, Zuzanna
    Renfrew, P. Douglas
    Bonneau, Richard
    Pochan, Darrin J.
    Pak, Alexander J.
    Montclare, Jin Kim
    BIOMACROMOLECULES, 2023, 25 (01) : 258 - 271
  • [37] The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila
    Sweeney, Neal T.
    Brenman, Jay E.
    Jan, Yuh Nung
    Gao, Fen-Biao
    CURRENT BIOLOGY, 2006, 16 (10) : 1006 - 1011
  • [38] The coiled-coil helix in the neck of kinesin
    Thormählen, M
    Marx, A
    Sack, S
    Mandelkow, E
    JOURNAL OF STRUCTURAL BIOLOGY, 1998, 122 (1-2) : 30 - 41
  • [39] Coiled-coil interactions of native myocilin
    Stamer, W
    Rak, DJ
    McKay, BS
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U187 - U187
  • [40] Regulation of coiled-coil assembly in tropomyosins
    Araya, E
    Berthier, C
    Kim, E
    Yeung, T
    Wang, XR
    Helfman, DM
    JOURNAL OF STRUCTURAL BIOLOGY, 2002, 137 (1-2) : 176 - 183