SIMPLE LIE GROUPS WITHOUT THE APPROXIMATION PROPERTY

被引:31
|
作者
Haagerup, Uffe [1 ]
De Laat, Tim [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen O, Denmark
基金
新加坡国家研究基金会;
关键词
FOURIER ALGEBRA; BOUNDED MULTIPLIERS; WEAK AMENABILITY;
D O I
10.1215/00127094-2087672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a locally compact group G, let A(G) denote its Fourier algebra, and let M(0)A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-* topology on the space M(0)A(G). Recently, Lafforgue and de la Salle proved that SL(3, R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3, Z). In this paper we prove that Sp(2, R) does not have the AP. It follows that all connected simple Lie groups with finite center and real rank greater than or equal to two do not have the AP. This naturally gives rise to many examples of exact discrete groups without the AP.
引用
收藏
页码:925 / 964
页数:40
相关论文
共 50 条
  • [21] A product theorem in simple Lie groups
    Nicolas de Saxcé
    Geometric and Functional Analysis, 2015, 25 : 915 - 941
  • [22] The index of compact simple Lie groups
    Berndt, Juergen
    Olmos, Carlos
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (05) : 903 - 907
  • [23] Semigroups of Simple Lie Groups and Controllability
    Rachida El Assoudi-Baikari
    Journal of Dynamical and Control Systems, 2014, 20 : 91 - 104
  • [24] Curvature spectra of simple Lie groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2013, 83 (02): : 219 - 230
  • [25] BRANCHING RULES FOR SIMPLE LIE GROUPS
    WHIPPMAN, ML
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (10) : 1534 - &
  • [26] Elastic Helices in Simple Lie Groups
    Garay, Oscar J.
    Noakes, Lyle
    JOURNAL OF LIE THEORY, 2015, 25 (01) : 215 - 231
  • [27] Semigroups of Simple Lie Groups and Controllability
    El Assoudi-Baikari, Rachida
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2014, 20 (01) : 91 - 104
  • [28] Curvature spectra of simple Lie groups
    Andrzej Derdzinski
    Światosław R. Gal
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2013, 83 : 219 - 230
  • [29] CODEGREE OF SIMPLE LIE-GROUPS
    OSHIMA, H
    OSAKA JOURNAL OF MATHEMATICS, 1989, 26 (04) : 759 - 773
  • [30] THEOREM ON COMPACT SIMPLE LIE GROUPS
    KALLMAN, RR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A16 - A16