A twisted quantum toroidal algebra

被引:1
|
作者
Jing, Naihuan [1 ,2 ]
Liu, Rongjia [1 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Vertex operator; toroidal algebra; quantum algebra; VERTEX REPRESENTATIONS;
D O I
10.1007/s11464-013-0316-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A (1) is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.
引用
收藏
页码:1117 / 1128
页数:12
相关论文
共 50 条
  • [31] Characters of representations of the quantum toroidal algebra gl1: Plane partitions with "stands"
    Mutafyan, G. S.
    Feigin, B. L.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2014, 48 (01) : 36 - 48
  • [32] Hosoya polynomials of twisted toroidal polyhexes
    Xu, Shou-Jun
    Chen, Hai-Yang
    Zhang, Qiu-Xia
    Tu, Liangping
    ARS COMBINATORIA, 2014, 114 : 417 - 425
  • [33] Twisted modules for toroidal vertex algebras
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (05) : 1681 - 1706
  • [34] Vertex representation of quantum N-toroidal algebra for type F4
    Ying Cenlei
    Xia Limeng
    Zhang Honglian
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3780 - 3799
  • [36] The octonions as a twisted group algebra
    Basak, Tathagata
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 113 - 121
  • [37] MODULES OF THE TOROIDAL LIE ALGEBRA (sic)
    Jing, N.
    Wang, C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (01): : 17 - 24
  • [38] (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
    Awata, Hidetoshi
    Kanno, Hiroaki
    Mironov, Andrei
    Morozov, Alexei
    Suetake, Kazuma
    Zenkevich, Yegor
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [39] Level-1/2 Realization of Quantum N-Toroidal Algebra in Type Cn
    Jing, Naihuan
    Wang, Qianbao
    Zhang, Honglian
    ALGEBRA COLLOQUIUM, 2022, 29 (01) : 79 - 98
  • [40] (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
    Hidetoshi Awata
    Hiroaki Kanno
    Andrei Mironov
    Alexei Morozov
    Kazuma Suetake
    Yegor Zenkevich
    Journal of High Energy Physics, 2018