Significance testing in nonparametric regression based on the bootstrap

被引:0
|
作者
Delgado, MA
Manteiga, WG
机构
[1] Univ Carlos III Madrid, Dept Estadist & Econometria, E-28903 Getafe, Spain
[2] Univ Santiago de Compostela, Fac Mat, Dept Estadist & Invest Operat, Santiago De Compostela 15782, Spain
来源
ANNALS OF STATISTICS | 2001年 / 29卷 / 05期
关键词
nonparametric regression; selection of variables; higher order kernels; U-processes; wild bootstrap; restrictions on nonparametric curves;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a test for selecting explanatory variables in nonparametric regression. The test does not need to estimate the conditional expectation function given all the variables, but only those which are significant under the null hypothesis. This feature is computationally convenient and solves, in part, the problem of the "curse of dimensionality" when selecting regressors in a nonparametric context. The proposed test statistic is based on functionals of a U-process. Contiguous alternatives, converging to the null at a rate n(-1/2) can be detected. The asymptotic null distribution of the statistic depends on certain features of the data generating process, and asymptotic tests are difficult to implement except in rare circumstances. We justify the consistency of two easy to implement bootstrap tests which exhibit good level accuracy for fairly small samples, according to the reported Monte Carlo simulations. These results are also applicable to test other interesting restrictions on nonparametric curves, like partial linearity and conditional independence.
引用
收藏
页码:1469 / 1507
页数:39
相关论文
共 50 条
  • [41] Cluster significance testing using the bootstrap
    Auffermann, WF
    Ngan, SC
    Hu, XP
    NEUROIMAGE, 2002, 17 (02) : 583 - 591
  • [43] OPTIMAL HETEROSKEDASTICITY TESTING IN NONPARAMETRIC REGRESSION
    Kotekal, Subhodh
    Kundu, Soumyabrata
    ANNALS OF STATISTICS, 2025, 53 (01): : 295 - 321
  • [44] Testing for additivity in nonparametric quantile regression
    Holger Dette
    Matthias Guhlich
    Natalie Neumeyer
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 437 - 477
  • [45] Selective Nonparametric Regression via Testing
    Noskov, Fedor
    Fishkov, Alexander
    Panov, Maxim
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [46] Testing for additivity in nonparametric quantile regression
    Dette, Holger
    Guhlich, Matthias
    Neumeyer, Natalie
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (03) : 437 - 477
  • [47] Testing strict monotonicity in nonparametric regression
    Birke M.
    Dette H.
    Mathematical Methods of Statistics, 2007, 16 (2) : 110 - 123
  • [48] Testing symmetry in nonparametric regression models
    Dette, H
    Kusi-Appiah, S
    Neumeyer, N
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) : 477 - 494
  • [49] CHARACTERISTIC FUNCTION BASED TESTING FOR CONDITIONAL INDEPENDENCE: A NONPARAMETRIC REGRESSION APPROACH
    Wang, Xia
    Hong, Yongmiao
    ECONOMETRIC THEORY, 2018, 34 (04) : 815 - 849
  • [50] Bootstrap confidence intervals in nonparametric regression with built-in bias correction
    McMurry, Timothy L.
    Politis, Dimitris N.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (15) : 2463 - 2469